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Network-Matched Trajectory-Based Moving-Object
Database: Models and Applications

Zhiming Ding, Bin Yang, Ralf Hartmut Güting, and Yaguang Li

Abstract—Tracking and managing the locations of moving ob-
jects are essential in modern intelligent transportation systems
(ITSs). However, a number of limitations in existing methods make
them unsuitable for real-world ITS applications. In particular,
Euclidean-based methods are not accurate enough in represent-
ing locations and in analyzing traffic, unless the locations are
frequently updated. Network-based methods require either dig-
ital maps to be installed in moving objects or transmission of
prediction policies, which inevitably increase the cost. To solve
these problems, we propose a network-matched trajectory-based
moving-object database (NMTMOD) mechanism and a traffic flow
analysis method using the NMTMOD. In the NMTMOD, the
locations of moving objects are tracked through a dense sampling
and batch uploading strategy, and a novel edge-centric network-
matching method, which is running at the server side, is adopted to
efficiently match the densely sampled GPS points to the network.
In addition, a deviation-based trajectory optimization method is
provided to minimize the trajectory size. Empirical studies with
large real trajectory data set offer insight into the design proper-
ties of the proposed NMTMOD and suggest that the NMTMOD
significantly outperforms other mobile-map free-moving-object
database models in terms of precision of both location tracking
and network-based traffic flow analysis.

Index Terms—Moving-object database, network-matched tra-
jectory, spatiotemporal database, traffic flow analysis.

I. INTRODUCTION

ADVANCES in wireless communication and positioning
technologies make tracking and managing the dynamic

locations of moving objects in databases [also known as
moving-object databases (MODs)] a key research issue. To des-
cribe the time-dependent locations and spatial extensions of mo-
ving objects, e.g., vehicles, ships, hurricanes, oil spills, MODs
employ nonconventional data types including moving points,
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moving lines, and moving regions [1]. Among these, moving
points, e.g., representing vehicles, are the most commonly
used in real-world applications. Moving points are also known
as “trajectories,” which are sampled and generated through
location updates.

Managing trajectories are crucial in modern intelligent trans-
portation systems (ITS). Given the trajectory of a vehicle,
its complete moving procedure, i.e., its location at any given
time instant, is available. In addition, given the trajectories
of massive vehicles, complicated functionalities such as traffic
flow analysis and driving pattern analysis can be supported [2].

Trajectories can be classified into three categories: Euclidean-
based trajectories [1], [3]–[6], network-based trajectories
[7]–[11], and network-matched trajectories. A Euclidean-based
trajectory is a sequence of sampled GPS points. The locations
of the moving object at any time can be derived through
Euclidean-based interpolations. However, the Euclidean-based
interpolations may cause errors because the underlying trans-
portation networks are ignored. Fig. 1(a) shows an example that
a moving object moves along a curvilinear road. The interpo-
lated position from two sampled locations considerably devi-
ates from the actual position of the moving object. To avoid this,
it requires more frequent location updates from moving objects.
However, this can dramatically increase the communication cost.

A network-based trajectory is a sequence of timestamped
network motion vectors. The network motion vectors are de-
rived by matching the sampled GPS points to the transportation
network through network-based location update mechanisms
[7], [9], and [10]. The locations of other than the sampling time
instants can be derived through network-based interpolations.
In Fig. 1(b), there are two possible paths between two sampled
GPS points sampling1 and sampling2. Normally, the shortest
path, (e1, e2, e5), is taken during network matching. However,
it may introduce an error when the driver actually follows a
different path (e1, e3, e4, e5), perhaps because the shortest path
is blocked by a traffic accident.

The network-based trajectory model requires mobile maps
and powerful mobile computing platform to perform network
matching on the moving object side. In this paper, we call the
maps installed on the moving object side and on the server side
as “mobile map” and “server map,” respectively. Moreover,
all mobile maps should be updated whenever the server map
changes due to the changes of the real-world transportation
network. This significantly increases the cost and reduces the
flexibility of the system considering the fact that, in many
countries, e.g., China, most GPS-equipped vehicles do not have
digital maps installed, and upgrading them is quite costly.
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Fig. 1. Euclidean-based and network-based trajectories. (a) Euclidean interpolation errors. (b) Network-matching errors.

Solutions without a mobile map exist [10], [12]. Instead,
the server sends either the current road information, e.g., the
geometry of the current road represented by polyline, or the
prediction policy to moving objects. Such solutions work fine
when the roads on which the moving objects traverse do not
change frequently, e.g., traveling on highways or in a sparse
road network. However, these solutions are not effective when
traveling in dense urban areas. The server needs to send either
the road information or the prediction policy whenever the
moving objects traverse to new roads. Consequently, the com-
munication cost is large. Further, these solutions are vulnerable
to communication failure. These methods rely on the predicted
location information of moving objects, and the server assumes
the moving objects traverse on the predicted routes as long as it
does not receive a location update. However, in the case of com-
munication failure which often happens when moving objects
run across high buildings, moving objects’ actual positions can
be miles away from the predicted ones as the moving objects
are unable to make location updates.

To solve the given problems, we propose a network-matched
trajectory-based moving-object database (NMTMOD) and
present a traffic flow analysis method using the NMTMOD.
A network-matched trajectory is composed of a sequence of
network motion vectors and a network path describing the route
of the moving object. In the NMTMOD, the installation of
mobile maps is not required. The locations of moving objects
are tracked through a dense sampling and batch uploading
(DSBU) method, and the network matching is conducted at
the server side. To reduce the storage size of network-matched
trajectory, the server discards unimportant samplings so that
only key information is included in the trajectories.

This paper makes the following contributions. First, a
mobile-map-free NMTMOD mechanism is proposed, which
adopts a DSBU location update strategy and manages to obtain
highly precise, storage-optimized, and network-matched trajec-
tories. Second, an edge-centric network-matching algorithm is
proposed, which is suitable for efficiently matching densely
sampled GPS points to the network with high precision. Third, a
network-matched trajectory-based traffic flow analysis method
is presented, Taking advantage of network-matched trajectories,
this method manages to achieve higher precision than existing
GPS-based traffic flow analysis methods.

The remainder of this paper is organized as follows.
Section II covers related work, and Section III formally de-
fines the traffic-parameterized network and network-matched

trajectories. The generation of network-matched trajectories is
presented in Section IV. The traffic flow statistical analysis
algorithms are described in Section V, and the performance
evaluation results are provided in Section VI. Finally, conclu-
sion and future work are summarized in Section VII.

II. RELATED WORK

Moving-Object Databases: MODs can be classified into
Euclidean-based MODs (EMODs) and network-based MODs
(NMODs). Earlier work on MODs mainly focuses on
Euclidean-based solutions. Güting et al. presented a data model
for managing moving objects based on abstract data types and
query operators [1]. Wolfson et al. propose a moving-object
spatiotemporal (MOST) model, which is capable of tracking
not only the current but also the near future positions of
moving objects [3], [4]. A few studies [13]–[15] explored traffic
analysis based on Euclidean-based trajectories. However, as
discussed in Section I, Euclidean-based methods suffer from
low precision in location tracking and traffic analysis.

Recently, increasing research interests have focused on
network-based moving objects. In [7], Güting et al. proposed
a traffic-network-based MOD model containing a rich set of
predefined data types and operations. Speicys et al. described
a computational data model for network-constrained moving
objects [9]. The modeling for dynamic transportation networks
and network-constrained moving objects is discussed in [8].
In addition, indexing methods for network-constrained moving
objects are investigated in [10] and [11]. The location tracking
strategies for network-constrained moving objects are explored
in [6], [12], and [16]. Compared with Euclidean-based solu-
tions, network-based solutions are more precise in location
representation and more efficient in terms of storage, location
updates, and indexing. The common drawback of network-
based methods is that the tracking of network-constrained mov-
ing objects usually needs mobile maps installed at the moving
object side, which can significantly increase the cost of the
whole system. From the earlier analysis, a mobile-map-free
NMOD model is desired.

Network-Matching Methods: Network-matching (also known
as map matching) is a process of aligning a sequence of
sampled positions with the underlying transportation network.
It is an essential step to generate network-matched trajectory
and network-matching methods can be categorized into three
groups [17]: local methods [18], [19], global methods [17],
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[20], [21], and statistical methods [22]. The local methods find
local matches of geometries and perform matching based on
the previous matching result of a point. The global methods
aim to find global optimal matching paths for entire trajec-
tories. The algorithm in [21] is based on Frechét distance
and its variant. In [17], an algorithm was proposed, which
takes temporal information into consideration and manages to
get higher accuracy for low-sampling-rate GPS trajectories.
Statistical method is also widely used, A method based on the
Bayesian classifier is presented in [23]. In [22], an algorithm
was proposed that takes advantage of the rich information
extracted from the historical trajectories to infer the real routes.
Two network-matching methods [24] and [25], which utilize the
multihypothesis technique (MHT), are proposed. However, the
MHT-based methods have very high computational complexity,
The aforementioned studies are more focused on the accuracy
than the efficiency, which makes them unsuitable for processing
massive trajectory data. Moreover, these methods have to use
extra information, e.g., heading, acceleration, and speed, which
is not always available.

GPS-Based Traffic Analysis: We are witnessing increasing
research interests on GPS-based traffic flow analysis methods.
Probe cars are equipped with GPS devices and wireless commu-
nication interfaces, and they periodically report their locations,
speeds, and directions to the central server where various traffic
analysis can be conducted. In addition, location-based social
networks facilitate people to use GPS-enabled mobile devices
to generate geo-tagged social postings, which can also be used
for traffic flow analysis using so-called social transportation
techniques [26].

In [15], the architecture and the data sampling methods in
floating-car systems were analyzed. In [27], several data anal-
ysis methods for floating-car systems were proposed. In [28],
the data sampling frequency for floating cars were analyzed.
In [8]–[10], how to derive traffic information from periodically
collected GPS data of moving objects were discussed. A few
recent studies has used GPS trajectories to estimate travel time
and fuel consumption for different roads in various settings
[29]–[33]. GPS trajectories also enable advanced vehicle nav-
igation systems, e.g., personalized navigation [34], [35] and
ecorouting [36], [37].

Compared with stationary-sensor-based and camera-based
methods and airborne methods, GPS-based traffic-flow-
analysis methods are less expensive and more flexible. How-
ever, these methods suffer from low precision of traffic flow
analysis because considerable errors can be introduced in the
network-matching process. The accuracy of GPS-based traffic
analysis significantly improves using the proposed NMTMOD.

III. NMTMOD DATA MODELING

To express traffic parameters in fine granularities, we propose
a novel traffic parameterized network, where each edge is
associated with a set of traffic flow parameters.

Definition 1 (Traffic Parameterized Network): A traffic pa-
rameterized network Net is defined as Net = (Nodes,Edges),
where Nodes is a set of nodes, and Edges is a set of traffic
parameterized edges.

Fig. 2. Edges around a node and its connectivity matrix. (a) Road structure.
(b) Traffic flows inside the node. (c) Connectivity matrix.

Definition 2 (Traffic Parameterized Edge): A traffic parame-
terized edge e ∈ Edges is defined as e = (eid, geo, len, nidfrom,
nidto,Para), where eid is the unique identifier of edge e; geo
is the polyline representing edge e; len is the length of edge
e; nidfrom and nidto are the identifiers of the starting node and
the ending node of edge e, respectively; and Para is a traffic
parameter set describing the traffic condition of edge e.

Definition 3 (Traffic Parameter Set): The traffic parameter
set of an edge, which is denoted Para, is defined as Para =
{(paraNamei, paraTypei, paraValuei)}mi=1, where (paraNamei,
paraTypei, paraValuei) is the ith traffic parameter of the edge
with name paraNamei, data type paraTypei, and value
paraValuei.

For example, an edge is associated with a traffic parameter
(“avgSpeed” “real,” “57”). It indicates that the edge’s average
speed (represented as a real number) is 57 km/h.

Definition 4 (Node): A node n ∈ Nodes is defined as n =
(nid, loc, {eidi}mi=1,matrix), where nid is the unique identifier
of node n, loc is the location of node n, {eidi}mi=1 is the set of
the identifiers of the edges that are connected by node n, and
matrix is the connectivity matrix of node n, which describes
the node’s traffic transferability between different edges.

Fig. 2(a) and (b) shows an example of the road structure and
possible traffic flows around node n. The connectivity matrix
of the node is shown in Fig. 2(c). The matrix describes possible
traffic flows through the node, and each element (either 0 or 1)
indicates whether moving objects can transfer from the “from”
edge to the “to” edge through the node. For instance, the marked
element value in Fig. 2(c) indicates that moving objects can
transfer from e5 to e3 through the node.

Next, we introduce some important concepts used in the
NMTMOD.

Definition 5 (Euclidean Motion Vector): A Euclidean mo-
tion vector of a moving object is defined as emv = (t, (x, y),
v, d), where t is the time when the vector is sampled, and (x, y),
v, and d indicate the location, the speed, and the direction of
the moving object at time t, respectively, A Euclidean motion
vector can be derived from a GPS record.

Definition 6 (Network Motion Vector): A network motion
vector of a moving object is defined as nmv = (emv, E), where
emv is a Euclidean motion vector, and E is a set of the
identifiers of the edges that are network matched based on emv.
Network motion vectors are classified into three categories
according to the cardinality of E: 1) when |E| = 0, emv is
outside the traffic network, and nmv is called “nonmatched”;
2) when |E| = 1, emv is matched to a specific edge, and nmv is
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Fig. 3. Network-matched trajectory.

called “single matched”; and 3) when |E| > 1, emv is matched
to multiple edges, and nmv is called “multiple matched.”

Definition 7: The network-matched trajectory of a moving
object, which is denoted nmtr, is defined as nmtr = (nmv1, P1,
nmv2, P2, . . . , Pn−1, nmvn), where nmvi (1 ≤ i ≤ n) indi-
cates the ith network motion vector, and Pi = 〈e1, e2, . . . , ek〉,
where 1 ≤ i < n is a sequence of edge identifiers representing
the network path of the moving object between nmvi and
nmvi+1. Pi is empty in three cases: 1) one or both of nmvi and
nmvi+1 are nonmatched or multimatched; 2) nmvi and nmvi+1

are in the same edge or in adjacent edges; 3) the path between
nmvi and nmvi+1 is unknown. Pi takes value ⊥ to indicate the
situation when the moving object is offline.

A network-matched trajectory can describe multiple con-
tinuous movements. For example, as shown in Fig. 3, the
network-matched trajectory is (nmv1, (e1, e3, e4, e5), nmv2,⊥,
nmv3, nmv4). Note that P3 is omitted since nmv3 and nmv4

correspond to two adjacent edges and the edges in P3 can be di-
rectly inferred from nmv3 and nmv4. Network-matched trajec-
tories are different from the trajectories of network-constrained
moving objects [8], which do not have the path information
between adjacent network motion vectors.

IV. GENERATING NETWORK-MATCHED TRAJECTORIES

Fig. 4 provides an overview of the NMTMOD, which con-
sists of three logical servers: network-matching server, trajec-
tory database server, and traffic analysis server. Two or more
logical servers can be deployed on a physical server.

A. Dense Sampling of Euclidean Motion Vectors

In the NMTMOD, each registered moving object (e.g., a
vehicle) is uniquely identified and is equipped with a GPS
receiver and a wireless interface. A moving object follows a
DSBU strategy.

In every τs time, a moving object’s GPS receiver samples
a Euclidean motion vector and keeps it at its local storage.
In addition, whenever its speed change or direction change
exceeds predefined thresholds,1 an additional local sampling
is triggered. In every τu time (τu � τs), the moving object
uploads the sampled Euclidean motion vectors to the network-
matching server as a location update message LUMsg = (moid,
{emvi}ni=1), where moid is the identifier of the moving object,

1After a careful analysis on the average speeds and the topological and
geometrical properties of the Beijing road network, we set the thresholds as
5 km/h and 30◦, respectively.

and emvi is the ith Euclidean motion vector. In the DSBU
mechanism, τs is set to a relatively small value, e.g., 10 s,
whereas τu is set to a relatively large value, e.g., 2 min. There-
fore, each location update message usually contains multiple
Euclidean motion vectors. The DSBU mechanism is shown in
the left side of Fig. 4, where each point indicates a sample and
each car icon indicates a location update.

When the network-matching server receives a location up-
date message, it transforms the Euclidean motion vectors into
a network-matched trajectory (nmtr), which is stored in the
trajectory database server. Finally, the trajectories are processed
by the traffic analysis server to update the traffic flow parame-
ters of the road segments.

B. Generating Network-Matched Trajectories

After receiving a location update message, the network-
matching server matches the sequence of Euclidean mo-
tion vectors to the underlying road network and generates a
network-matched trajectory.

In the following, we first define a basic network-matching
algorithm in Section IV-B1; then, we describe the point-to-
path matching algorithm to deal with multimatched points in
Section IV-B2, and finally, we provide the complete edge-
centric network-matching algorithm in Section IV-B3.

1) Distance-Direction-Connectivity-BasedMatchingMethod:
This method takes as input the transportation network Net and
an Euclidean motion vector emv and returns an edge set E that
consists of the edges to which emv is mapped while considering
the distance, direction, and connectivity constraints.

First, the method retrieves the edges whose distances to
emv is smaller than the GPS measurement error threshold as
candidate edges. Next, it eliminates edges whose directions do
not match the direction of the motion vector. Finally, it elimi-
nates candidate edges according to the connectivity constraint.
Suppose that efrom and eto are the edges of emv’s previous
matched edge and next matched edge, respectively. For ∀ e ∈
E, if e is not connected from efrom or is not connected to eto, e
is removed from E. Nodes’ connectivity matrices enable testing
the connectivity constraints.

In most cases, a single-matched network motion vector, as
defined in Definition 6, is obtained. However, cases when the
motion vector is nonmatched (e.g., when the moving object
is running outside the network) or multimatched (e.g., when
the moving object is running around intersections or in dense
network) may occur. These motion vectors can be transformed
to single-matched ones if we know the path information.

2) Transforming Multimatched Motion Vectors to Single
Matched Based on Path Information: In the network-matching
process, it often occurs that the previous and succeeding motion
vectors are single matched, whereas the intermediate motion vec-
tors are multimatched. In this case, we are able to infer the path
information from the single-matched motion vectors and trans-
form the multimatched motion vectors into single-matched ones.

As shown in Fig. 5, the path between the two single-matched
motion vectors nmv1 and nmv3 can be derived if they are in the
same edge [see Fig. 5(a)], in two adjacent edges [see Fig. 5(b)],
or in two edges connected by another edge [see Fig. 5(c)].
Therefore, by further considering the path information, the
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Fig. 4. Structure of the NMTMOD system.

Fig. 5. Multimatched vectors to single-matched vectors. (a) Single-edge path.
(b) Dual-edge path. (c) Triple-edge path.

Fig. 6. Ambigous situation and path measurement. (a) Ambiguous situation.
(b) Path measurement.

multimatched motion vector nmv2 can be converted to single-
matched one.

However, there exist several multimatched motion vectors
and/or possible paths between two single-matched motion vec-
tors. Fig. 6(a) gives such an example. In this case, we evaluate
the probability of each candidate path and choose the one with
the highest probability. Take Fig. 6(b) to illustrate, suppose the
nearest edges in the path P for emv1 and emv2 are e1 and
e2 respectively, the probability of the resulting nmtr that uses
path P is

Pr(P, nmtr) =
n∏

i=2

1√
2πσ

exp

(
− di

2σ2

)
· 1
β
exp

(
li − l̂i
β

)

where σ is the standard deviation of the GPS points as normal
distribution; di is the distance between emvi and its nearest
edge in P , e.g., d1, d2; li is the distance between emvi and
emvi−1; l̂i is the length of the corresponding path fragment,
e.g., p1, v1, p2; and β is the scaling factor.

3) Edge-Centric Network-Matching Algorithm: We proceed
to describe the edge-centric network-matching process. It takes
as input two arguments, i.e., the traffic network Net and

Fig. 7. Motion vectors to be matched to the network.

the location update message LUMsg = (moid, ((ti, (xi, yi),
vi, di))

n
i=1), and returns a network-matched trajectory.

The algorithm processes the Euclidean motion vectors in
LUMsg through multiple rounds. For each round, efrom rep-
resents the edge where the moving object is located at the
end of the previous round, whereas i and j denote the starting
and the ending motion vectors, respectively. Normally, nmvj
is the first single-matched motion vector in the current round
whose matched edge is not efrom or the last motion vector.
For instance, Fig. 7 shows a sequence of motion vectors in
LUMsg, where the motion vectors with red color represent the
multimatched cases, and blue ones denote the single-matched
cases, whereas white ones indicate the none-matched cases. The
motion vectors in Fig. 7 are processed in six rounds with the
(i, j) pairs being (1, 3), (4, 6), (7, 12), (13, 16), (17, 21), and
(22, 22), respectively.

In each round, the algorithm match the motion vectors
nmvi ∼ nmvj to the network. If nmvj is single matched to an
edge ej other than efrom, then ej is assigned to eto. After that,
the algorithm generates all possible paths SP , and then chooses
the path with the highest probability. For the multimatched
motion vectors in the current round, the algorithm uses the
connectivity constraint to further eliminate infeasible edges.

For instance, in the first round of motion vectors shown in
Fig. 7, efrom=e0, eto=e1, and P =(e0, e1). Therefore, the
multimatched motion vectors nmv1, nmv2 can be single
matched to e0 and e1 respectively. Similarly, the multimatched
motion vectors in the second, third, and fourth rounds, can
also be transformed to single-matched ones. In the fifth
round, efrom = e5 and eto = e5. Since nmv17 ∼ nmv20 are
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nonmatched motion vectors, and nmv21 is single matched,
they remain unchanged. In the sixth round, efrom = e5, eto =
e7, P = (e5, e6, e7), and consequently, P21 = (e5, e6, e7).

The matching result is nmtr=((emv1, e0), (emv2, e1), (emv3,
e1), (emv4, e2), (emv5, e2), (emv6, e2), (emv7, e2), (emv8, e2),
(emv9, e2), (emv10, e3), (emv11, e3), (emv12, e3), (emv13, e3),
(emv14, e4), (emv15, e5), (emv16, e5), (emv17,⊥), (emv18,⊥),
(emv19,⊥), (emv20,⊥), (emv21, e5), (e5, e6, e7), (emv22, e7)).

The edge-centric network-matching algorithm is able to
match most multimatched motion vectors to the network cor-
rectly with no shortest path calculation involved. This is
one of the main advantages compared with “previous-point-
dependent” network-matching methods.

C. Discarding Unimportant Motion Vectors

Since the Euclidean motion vectors are sampled densely,
the size of the network-matched trajectory may be very large
if all the sampled motion vectors are stored in the database.
Therefore, the server needs to optimize the storage of the
trajectories by discarding unimportant motion vectors so that
only key motion vectors are kept in the database. Moreover,
when a single-matched motion vector is discarded, its edge
information should remain in the database.

The procedure of discarding unimportant motion vectors is
based on the assumption that, in most cases, a moving object
traverses on its route with a constant speed. A new motion
vector, called a key motion vector, is needed only when the
deviation between the current position of the moving object
and the predicted position becomes larger than a threshold δε.
Given nmtr = (nmv1, P1, nmv2, P2, . . . , Pn−1, nmvn), a mo-
tion vector nmvi = ((ti, (xi, yi), vi, di), Ei) can be discarded
if the following constraint is satisfied:

distance (pos (predict

× (path, nmvstart,Δt)) ,pos(nmvi)) ≤ δε.

The function predict takes three arguments: the path P that
mo traverse, and the starting motion vector nmvstart that con-
tains the starting position and the speed, and the elapsed time
Δt. It returns the predicted motion vector based on the constant
speed assumption. The function distance returns the distance
between two positions.

Algorithm 1 takes two arguments, i.e., the traffic network Net
and the network-matched trajectory nmtr = (nmv1, P1, nmv2,
P2, . . . , Pn−1, nmvn), and returns the network-matched trajec-
tory, which consists of only key motion vectors. In Algorithm 1,
function len(nmtr) returns the number of motion vectors in
nmtr, function merge(path, Pj−1) returns the merge result
of the two paths, function distanceNet(nmvi, nmvj , path)
returns the distance between nmvi and nmvj on the path of
the moving object, i.e., P . i is the index of the starting motion
vector, j is the index of the end motion vector, and the algorithm
tries to find the maximum j satisfying the following constraint
for ∀ i ≤ k ≤ j:

distance (pos (predict(path,mvi,Δt)),pos(nmvk))≤δε.

Algorithm 1 Discarding(Net, nmtr)

1: j ← 1; vmax = ∞; vmin = 0
2: while j ≤ len(nmtr) do
3: i ← j
4: j ← i+ 1
5: if |Ei| = 1 then
6: P = {} �initialize P as an empty list
7: while j ≤ len(nmtr) ∧ |Ej | = 1 do
8: P ← merge(P, Pj−1)
9: l ← distanceNet(nmvi, nmvj , P )

10: Δt ← nmvj .t− nmvi.t
11: v ← l/Δt
12: v′min ← v − δε/Δt; v′max ← v + δε/Δt
13: if (v′max ≥ vmin) ∧ (v′min ≤ vmax) then
14: vmax ← min(vmax, v

′
max)

15: vmin ← max(vmin, v
′
min)

16: nmvi.v ← (vmin + vmax)/2
17: remove(nmtr, nmvj , Pj)
18: j ← j + 1
19: else
20: break
21: return nmtr

This can also be considered the process of finding the con-
stant speed v, so that it predicts as many motion vectors as
possible.

The algorithm initializes a window of possible speed of the
moving object [0,∞]; then, it iterates through the trajectory
to find the maximum j by gradually decreasing the window
size: 1) it finds the first single matched motion vector nmvi;
2) then it calculates the average speed from nmvi to nmvj

as v (line 8–line 11), followed by deriving the speed win-
dow: [v′min, v

′
max] (line 12); 3) if [v′min, v

′
max] intersects with

[vmin, vmax] (line 13), which means the location nmvj can
be predicted, then the algorithm calculates the intersection,
sets the speed of nmvi, and discards nmvj (line 14–line 17);
4) finally, it moves to the next motion vector nmvj+1 (line 18);
and 5) otherwise, the algorithm will break and reinitialize
(line 20).

At the server side, whenever it receives a new location up-
date message, it first conducts network-matching and trajectory
optimizing, and then it appends the newly generated network-
matched trajectory to the database. Sometimes, the last several
motion vectors of the location update message may remain
multimatched if the moving object is around intersections. In
this case, they are also stored to the database and are further
processed when more information is available at the next loca-
tion update.

V. TRAFFIC FLOW ANALYSIS BASED ON

NETWORK-MATCHED TRAJECTORIES

Network-matched trajectories enable accurate traffic-
network-based data analysis. We proceed to discuss traffic flow
analysis using network-matched trajectories.
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Fig. 8. Structure of the TSA Tree.

Fig. 9. truncate(nmtr, e, T ) function.

In NMTMOD, we adopt an incremental traffic analysis
method. Two thresholds are introduced to control the frequen-
cies of statistical computations and database updates: 1) the
least time gap Ψt, i.e., for any edge, the time interval between
two consecutive statistical computations must exceed Ψt; and
2) the least value gap Ψv, i.e., for any traffic parameter on any
edge, the absolute value difference between two consecutive
traffic-parameter database writes must exceed Ψv . Smaller gaps
cause high frequencies of database updates and thus more
accurate traffic flow information.

For any edge, its parameters are calculated from the trajecto-
ries which passed through it during the last Δtstat time, where
Δtstat is the size of the time window for choosing statistical
analysis source data.

To speed up the statistical analysis, a traffic statistical analy-
sis Tree (TSA-Tree) is built in NMTMOD, as shown in Fig. 8.
The TSA-Tree adopts a B+-Tree like structure. Each entry in
a leaf node concerns an edge and associates a pointer to a
statistical source data block (SSDB). The SSDB contains three
parameters, Geo, TraffPara, and Snmtr, where Geo ∈ polyline
is the geometry of the edge, TraffPara includes the traffic
parameters of the edge (see Definition 3), and Snmtr contains
all the trajectory pieces that passing through the edge during
the recent Δtstat time. For a trajectory nmtr, the part of the
trajectory corresponding to edge e during period T can be
calculated through truncation function truncate(nmtr, e, T ),
as shown in Fig. 9.

Set Snmtr is dynamically maintained whenever a new loca-
tion update message is received. Suppose that the newly gen-
erated trajectory from the location update message is nmtr. For
each edge e in nmtr, the server needs to get the trajectory piece
through truncate(nmtr, e, [tnow −Δtstat, tnow]) and save it
to the SSDB of the edge. Meanwhile, each existing trajectory
piece in the SSDB needs to be checked, and the obsolete ones
are eliminated.

The traffic parameters of the edge can be computed based
on the trajectory pieces in SSDB. We assume that Snmtr =
{nmtr1, nmtr2, . . . , nmtrn}, first(nmtr) and final(nmtr) return
the first and last motion vectors of the trajectory nmtr, re-
spectively, and time(nmv) and pos(nmv) return the time and
location of motion vector nmv, respectively.

Consider how to compute the average speed of an edge.
For each nmtr ∈ Snmtr, the speed through the edge can
be computed as v(nmtr) = len(nmtr)/(time(final(nmtr))−
time(first(nmtr))). Therefore, the average speed can be com-
puted as vavg =

∑
nmtr∈Snmtr

v(nmtr)/|Snmtr|.
The number of moving objects on edge e,

which is denoted ηmo, can be computed as ηmo =∑
nmtr∈Snmtr

inside(pos(final(nmtr)), e), where the func-
tion inside(p, e) returns 1 if point p is on edge e, and returns 0
if not.

The flux of moving objects on edge e, which is denoted χmo,
is the number of moving objects passing through e at each time
unit, and can be computed as

χmo =

∑
nmtr∈Snmtr

(1 − inside (pos (final(nmtr)) , e))

Δtstat
.

The traffic jams and their locations on edge e can also be
derived from Snmtr. For mtr ∈ Snmtr (suppose nmtr = (nmv1,
P1, nmv2, P2, . . . , Pn−1, nmvn)), the speed between any two
adjacent samplings, nmvi and nmvi+1, can be computed as
v(nmvi, nmvi+1) = (distanceNet (nmvi, nmvi+1, Pi))/
(time(nmvi+1)− time(nmvi)). Based on the above, we can
compute the sections of e where the moving object travels
with speed slower than a certain threshold δvjam

, which is
denoted slowSections(nmtr, δvjam

). Then, the traffic jams
of e, which is denoted αjam, can be computed as αjam =⋂

nmtr∈Snmtr
slowSections(nmtr, δvjam

). If there are no traffic
jams in e, then αjam is ∅.

Note that more and advanced traffic parameters can be de-
rived. For instance, we can infer the number of vehicles based
on ηmo if we know the proportion of moving objects among all
vehicles. Moreover, we can further infer the degree of saturation
of e with additional road parameters, e.g., the number of lanes
and the length of the edge.

The detailed procedure of traffic statistics data refreshment
is provided in Algorithm 2. For each edge in the trajectory
piece, the function searchTSA(e) is used to retrieve the
SSDB of e by searching the TSA-Tree (line 2), and then
function insert(SSDB, nmtr) is used to insert the piece of
trajectory nmtr into SSDB (line 4). After that, it calls function
update(SSDB, T ) to update the SSDB with obsolete trajec-
tory pieces being removed (line 5). If the time interval is larger
than Ψt, the algorithm will refresh traffic parameters of this
edge (line 7–line 11). The function getValue(SSDB, para)
is used to get the value corresponding to para from SSDB,
function compute(Para, SSDB) computes the para of the
trajectory pieces in SSDB, and function writeDB(e, para) is
used to save the parameter para of e into the database.
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Algorithm 2 TrafficRefresh(nmtr)

1: for ∀ e ∈ nmtr do
2: SSDB = searchTSA(e)
3: t′ = SSDB.lastRefresh
4: insert(SSDB, truncate(nmtr, e, [tnow −

Δtstat, tnow]))
5: update(SSDB, [tnow −Δtstat, tnow])
6: if tnow − t′ > Ψt then
7: for ∀ para ∈ TraffPara do
8: valold ← getValue(SSDB, para)
9: valnew ← compute(para,SSDB)

10: if |valnew − valold| > Ψv then
11: writeDB(e, para)

VI. EMPIRICAL STUDIES

We describe implementation issues and report on empirical
studies of the accuracy and efficiency of the NMTMOD.

A. Implementation Issues

We implement the proposed NMTMOD in PostgreSQL 8.2.4
with PostGIS 3.2 extension for spatial support. The NMTMOD
runs on servers where each is with Intel(R) Core i5 CPU
2.5 GHz and 2GB RAM under Linux. PostgreSQL is an object-
relational database management systems (DBMSs), which al-
lows user defined data types and operators, which facilities the
NMTMOD model to be plugged in the PostgreSQL seamlessly.
To speed up the query processing, we use an R-Tree to index the
road network and an MOSTR-Tree [38] to index trajectories.

In the trajectory database server, we implement a set of new
data types, including nmtr, matrix, traffpara, etc., so that the
motion vectors and trajectories can be expressed and managed
at the database kernel directly. Based on these data types, we
created three relational tables at the database server: edges (eid:
string, geo: polyline, len: real, nidfrom: string, nidto: string,
para: traffpara); nodes (nid: string, loc: point, co-edges: struct-
string, mat: matrix); and MObjs (moid: string, moDescript:
string, traj: nmtr).

In addition, we define a set of operators so that the new data
types can be processed using SQL. The operators are divided
into five categories: 1) extraction operators, which extract de-
tailed information from the edges or nodes of the transportation
network; 2) truncation operators, which select part of the tra-
jectory according to spatial and temporal ranges; 3) projection
operators, which project trajectory to the latitude–longitude
plane or to the time axis; 4) transform operators, which
transform network-based points to Euclidean-based points and
vice versa; 5) location update operators, which take location
update messages and conduct location update procedures at the
server side as discussed in Section IV.

B. Experimental Setup

We use the road network of Beijing with 75 268 edges and
56 201 nodes, which covers both urban and suburban roads, i.e.,
the roads within and outside the fourth ring road, respectively.

Fig. 10. Network matching. (a) Accuracy. (b) efficiency.

We use more than 10 million GPS records collected from 7100
vehicles that traveled during both peak and off-peak periods.

1) Settings for Network Matching: To evaluate the accuracy
of the edge-centric matching algorithm, we compare it with
an incremental algorithm IMM05 [21], and a hidden-Markov-
model-based algorithm NK09 [20]. For both methods, we fol-
low the original papers to choose parameters. In particular,
for IMM05, we use μd = 10, α = 0.17, nd = 1.4, μa = 10,
nα = 4; for NK09, we use σ = 4.1 and β = 5. Preprocessing
and optimization suggested in [20] are made to NK09.

For each trajectory, we create a NMTMOD trajectory ac-
cordingly and compare it with the two trajectories produced by
IMM05 and NK09 to check if the matching results are correct.
The precision is then defined as the ratio of the correct matches
to the total matches.

2) Settings for Moving-Object Database: To evaluate the
performance of the NMTMOD, which adopts the DSBU strat-
egy, we implement two other MODs: the EMOD, which uses
the vector-based location update method, and the NMOD,
which uses the segment-based location update method. The two
methods for location updates are introduced in [12]. We set
τu = 5 min.

3) Ground-Truth Data: In the network-matching experi-
ment, we use 14 436 manually labeled trajectory points col-
lected from ten cars as the ground-truth data. In the traffic
analysis experiment, however, manually labeling millions of
points is infeasible. Thus, the ground-truth data are derived
from the matching result of the NK09 algorithm on densely
sampled trajectory points as the matching accuracy of the NK09
algorithm is expected to be higher than 98% when the sampling
interval is within 10 s.

C. Evaluating Network-Matching Algorithm

Fig. 10(a) shows the relationship between the network-
matching precision and the sampling time interval τs. As stated
in Fig. 10(a), when τs is lower than 15 s, the accuracy of
the edge-centric matching algorithm is close to 100%, and
then gradually decreases to 95% when τs = 60 s. Generally
speaking, the network-matching precision increases when the
sampling interval τs decreases, the reason for this result is
that the network-matching precision is actually decided by the
density of the sampling points. When τs decreases, the distance
between any two neighboring sampling points becomes shorter,
consequently the network-matching precision increases.
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Fig. 11. Communication evaluation. (a) Number of samplings. (b) Commu-
nication cost.

Fig. 10(b) shows the efficiency of the network-matching
algorithms. Compared with NK09, the proposed edge-centric
matching algorithm achieves much higher speeds while main-
taining roughly the same accuracy. This is due to the fol-
lowing reasons. First, the edge-centric matching algorithm is
independent on previous points; thus, the errors in previous
points do not result in further errors. Second, the algorithm
considers distance, direction, and connectivity to eliminate
infeasible edges, and adopts an efficient method dealing with
the ambiguous situations. Finally, no shortest path calculation
is required, which makes the algorithm much faster than NK09.

D. Analysis of the NMTOD

We compare the NMTMOD with the traditional EMOD and
the NMOD in terms of communication cost, storage consump-
tion, tracking accuracy, and traffic analysis accuracy.

1) Communication Cost and Storage Consumption: We as-
sume that the moving objects use GPRS for wireless commu-
nication, and therefore, the communication cost is measured as
the total size of the packages that the moving objects need to
send to the servers. Further, we assume the Transmission Con-
trol Protocol/Internet Protocol (TCP/IP) is applied for transmit-
ting the data, which bring an overhead of 40 B (20 B for IPv4
header and 20 B for TCP header). The location update message
LUMsg = (moid, ((ti, (xi, yi), vi, di))

n
i=1), where moid and ti

are integers, xi and yi are floats, andvi and di are represented
by a single short integer; therefore, the size of the package is
40 + 4 + (4 + 4 + 4 + 2) ∗ n = 44 + 14n B.

Fig. 11(a) shows the number of samplings, whereas
Fig. 11(b) shows the communication cost. Although the number
of samplings of NMTMOD is much higher than NMOD, their
communication cost is roughly the same. This is because the
location update messages are wrapped into IP packages, which
contain many data dedicated for communication, e.g., routing
information, checksum, and flags. When the location update
message size is small, the package size is mainly determined by
the communication data, i.e., five motion vectors per package
and one motion vector per package do not make much differ-
ence in terms of package size. As a result, the communication
cost is basically decided by the number of packages, which
is determined by τu. Moreover, the number of samplings of
NMOD is higher than that of EMOD. This is because the road
segments in the underlying traffic network are relatively short
and straight, and it frequently happens that several connected
road segments can be roughly represented by a single vector.

Fig. 12. Storage evaluation. (a) Storage consumption. (b) Effect of discarding.

Fig. 13. Tracking analysis. (a) Average position deviation. (b) Edge accuracy.

Fig. 12(a) shows the storage consumption of the three MODs,
whereas Fig. 12(b) demonstrates the relationship between stor-
age consumption and the sampling interval τs and the effect
of discarding. The storage consumption of NMTMOD is also
roughly the same with NMOD and just slightly higher than
EMOD. As shown in Fig. 12(b), the storage consumption of
NMTMOD barely changes when the sampling interval τs de-
creases. The reason is that, after discarding unimportant motion
vectors, the size of a network-matched trajectory is mainly de-
cided by the route of the moving object, which is independent of
individual sampling points. Since most unimportant sampling
points are discarded, the size of the resulting trajectory becomes
stable. On the other hand, as indicated in Fig. 12(b), the storage
consumption without discarding optimization increases rapidly
when τs decreases.

2) Tracking Accuracy: The tracking accuracy is evaluated
in terms of both the position and corresponding edge of the
moving object. In NMTMOD, the position of the moving object
is calculated using the prediction method based on the constant
speed assumption, and the Euclidean-based prediction method
is also used if the moving object reaches the end of its path.

First, we randomly choose several timestamps and get the
positions and edges of all the moving objects from the MODs
at that moment. After that, we compute the average position
deviation and edge accuracy of each moving object. Fig. 13(a)
and (b) shows the average position deviation and the edge
accuracy of the MODs, respectively. The tracking accuracy of
NMTMOD is much higher than the EMOD, and also quite
comparable to the NMOD. We can conclude that, with trajec-
tory points being densely sampled and unimportant ones being
discarded, the NMTMOD manages to achieve a higher tracking
accuracy while maintaining low storage consumption.

3) Traffic Analysis: We choose two most commonly used
traffic parameters in ITS applications, i.e., the average speed
and the flux of the edge, to evaluate the traffic analysis accuracy.
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Fig. 14. Traffic analysis. (a) Average speed accuracy. (b) flux accuracy.

The accuracy of the statistics about speed is calculated accord-
ing to ξtp = |{e|e ∈ Edges ∧ abs(t̃pe − tpe) ≤ δtp}|/|Edges|,
where δtp is the threshold for the traffic parameter, e.g., 2 m/s
for speed and 1 for flux, and an edge is considered as correct
if the absolute difference between its corresponding parameter
value tpe and the real one t̃pe is lower than δtp.

Fig. 14(a) shows the accuracy of speed statistics, whereas
Fig. 14(b) shows the accuracy of flux. For similar reasons of
high tracking accuracy, the speed accuracy and flux accuracy
of NMTMOD are also much higher than EMOD and are quite
comparable to NMOD.

To sum up, compared with EMOD models, NMTMOD has
higher precision in location tracking under similar communi-
cation cost and higher precision in TSA. Compared with other
NMOD models, NMTMOD achieves similar location tracking
accuracy and storage efficiency while being mobile-map free.
In addition, the edge-centric network-matching algorithm has
better performance in dealing with densely sampled motion
vectors.

Discussion: It is nontrivial to choose an appropriate param-
eter τs when using the proposed DSBU strategy. If τs is too
short, the communication costs increase substantially. On the
other hand, if τs is too long, the tracking accuracy decreases
significantly. A strategy is needed such that parameter τs can be
automatically configured. Specifically, when vehicles travel in
regions with dense road networks (e.g., urban regions) or with
high speeds (e.g., during off-peak periods), the strategy may
automatically set a short τs in order to maintain high tracking
accuracy. In contrast, when vehicles travel in regions with
sparse road networks (e.g., rural regions) or with low speeds
(e.g., during peak periods), the strategy may automatically set a
long τs in order to save communication costs while maintaining
high tracking accuracy. We leave it as an interesting future
research direction.

VII. CONCLUSION

Mobile-map-free tracking and managing of moving objects’
trajectories are of great importance to network-constrained
moving objects management and are also crucial for a great
number of applications such as traffic flow statistical analysis
and network-based moving pattern mining. However, existing
methods, such as EMODs and NMODs, cannot provide high
tracking accuracy or support mobile-map-free tracking. In this
paper, we propose the NMTMOD model to precisely track and
efficiently manage the network-matched trajectories of mov-

ing objects while requiring neither mobile maps nor network-
matching at the moving object side. In particular, compared
with EMODs, the NMTMOD is able to provide higher tracking
precision with similar communication cost; and compared with
NMODs, the NMTMOD achieves similar accuracy tracking
precision and storage requirement while being mobile-map
free. Thus, the NMTMOD is a mobile-map-free approach for
tracking and managing moving objects’ trajectories with high
precession, which is able to support a wide variety of traffic
related applications.

In the future work, we plan to investigate traffic pattern anal-
ysis and data mining techniques based on the NMTMOD. It is
also of interest to explore how to dynamically and automatically
choose important parameters such as τs.
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