
CoSTCo: A Neural Tensor Completion Model for Sparse Tensors
Hanpeng Liu

University of Southern California

Los Angeles, California

hanpengl@usc.edu

Yaguang Li

University of Southern California

Los Angeles, California

yaguang@usc.edu

Michael Tsang

University of Southern California

Los Angeles, California

tsangm@usc.edu

Yan Liu

University of Southern California

Los Angeles, California

yanliu.cs@usc.edu

ABSTRACT
Low-rank tensor factorization has been widely used for many real

world tensor completion problems. While most existing factoriza-

tion models assume a multilinearity relationship between tensor

entries and their corresponding factors, real world tensors tend

to have more complex interactions than multilinearity. In many

recent works, it is observed that multilinear models perform worse

than nonlinear models. We identify one potential reason for this

inferior performance: the nonlinearity inside data obfuscates the

underlying low-rank structure such that the tensor seems to be

a high-rank tensor. Solving this problem requires a model to si-

multaneously capture the complex interactions and preserve the

low-rank structure. In addition, the model should be scalable and

robust to missing observations in order to learn from large yet

sparse real world tensors. We propose a novel convolutional neu-

ral network (CNN) based model, named CoSTCo (Convolutional
Sparse Tensor Completion). Our model leverages the expressive

power of CNN to model the complex interactions inside tensors

and its parameter sharing scheme to preserve the desired low-rank

structure. CoSTCo is scalable as it does not involve computation-

or memory- heavy tasks such as Kronecker product. We conduct

extensive experiments on several real world large sparse tensors

and the experimental results show that our model clearly outper-

forms both linear and nonlinear state-of-the-art tensor completion

methods.

CCS CONCEPTS
• Computing methodologies → Machine learning; Neural
networks; Factorization methods.

KEYWORDS
Sparse Tensor Completion, Nonlinear Tensor factorization, Convo-

lutional neural network

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’19, August 4–8, 2019, Anchorage, AK, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6201-6/19/08. . . $15.00

https://doi.org/10.1145/3292500.3330881

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Tr
ai

ni
ng

 M
S

E

high-rank multilinear tensor (rank=20)

CoSTCo
CP
Tucker

low-rank nonlinear tensor (rank=5)

1 3 5 7 9 11 13
rank

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Tr
ai

ni
ng

 M
S

E

low-rank multilinear tensor (rank=5)

1 3 5 7 9 11 13
rank

real world tensor (rank unknown)

Figure 1: Rank-vs-loss curves of four tensor completion ex-
periments with fully observations. The curves of CP/Tucker
methods on the low-rank nonlinear tensor is different to
those on low-rank multilinear tensors but similar to those
on high-rank multilinear tensors1.

ACM Reference Format:
Hanpeng Liu, Yaguang Li, Michael Tsang, and Yan Liu. 2019. CoSTCo: A

Neural Tensor Completion Model for Sparse Tensors. In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’19),
August 4–8, 2019, Anchorage, AK, USA. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3292500.3330881

1 INTRODUCTION
A tensor is an effective way of representing multidimensional real

world data. Due to the issue of sparsity or incompleteness in many

real world tensors, tensor completion, which predicts the missing

entries of a partially observed tensor, has gained wide interest and

serves as a fundamental problem of many machine learning applica-

tions, such as recommendation [11, 33], image in-painting [24, 28],

spatial-temporal analysis [43], and health data analysis [15–17].

Low-rank tensor factorization is a popular method for tensor com-

pletion. This method assumes a compact underlying structure in

the tensor such that its entries can be reconstructed from low-rank

factor matrices through multilinear multiplication. Thus we can

1
We clip the values for better visualization so that the minimum value is 10

−6
.

https://doi.org/10.1145/3292500.3330881
https://doi.org/10.1145/3292500.3330881

complete a tensor by first finding latent factors through observed

entries and then reconstructing the tensor with these factors
2
. CP

(CANDECOMP/PARAFAC) [14] and Tucker [40] are two popular

low-rank tensor factorization models with many variants being

developed.

Recently, a series of works [8, 11, 15, 16, 42, 48] have shown

that nonlinear factorization models have superior performances

over multilinear models for sparse tensor completion. It is believed

that real world tensors tend to have interactions that are more

complex than the multilinear multiplication assumed by the CP

and Tucker models. We hypothesize that multilinear models have

inferior performance because the nonlinearity in data obfuscates

the low-rank property, i.e. a low-rank nonlinear tensor seems to be

a high-rank one for multilinear models. This obfuscation prevents

the low-rank model from fitting the data well. To examine this

hypothesis, we train factorization models to learn the latent factors

of fully observed tensors and measure the reconstruction losses.

Figure 1 shows the results of three synthetic CP tensors
3
and one

real world tensor. Both CP and Tucker find good latent factors and

achieve very small reconstruction error on the low-rank multilinear

tensor. However, in the case of a low-rank nonlinear tensor, both
CP and Tucker model behave similarly to those of a high-rank

multilinear tensor. The real world tensor is much more complex

and the loss curves of CP and Tucker decrease slowly. In comparison,

our proposed model CoSTCo fits the nonlinear tensor well at a low

rank and the loss curve of our model decreases faster compared to

CP and Tucker.

To capture complex interactions within a tensor, the model must

have strong expressive power to capture the underlying nonlin-

earity. In addition, the model needs to be parameter efficient to

avoid overfitting to the sparse and limited training data and thus

to achieve good generalization performance.

In this paper, we propose a novel nonlinear low-rank model,

called CoSTCo (Convolutional Sparse Tensor Completion), to do

tensor completion for large sparse tensors that have complex un-

derlying structures. With the expressive power of CNNs, our model

is capable of learning a complex nonlinear interaction function

among factors. The parameter sharing scheme of CNN imposes an

inductive bias on CoSTCo which enforces it to learn a parameter-

efficient representation of the nonlinear function and informative

factor vectors. The scheme helps the model to preserve the low-

rank structure and makes the model robust to sparse inputs, which

is crucial for generalization. Like other neural networks, CoSTCo
can be efficiently trained with Stochastic Gradient Descent (SGD).

The model does not require computation/memory heavy opera-

tions in the training process, such as Kronecker product or Gram

matrix. Furthermore, CoSTCo scales well with the mini-batch train-

ing scheme of modern neural nets which avoids explicit storage

of the whole tensor. We also draw connections from recent ad-

vances [7, 13] in deep learning theory and show that a slightly

simplified variant of CoSTCo falls into the category of shallow neu-

ral nets [7], which has been proven to have fast convergence rate

and bounded generalization error.

2
We use factors and factor matrices interchangeably wherever the context is clear.

3
The nonlinear tensor is generated by replacing the multiplication funciton inside

original CP factorization with a non-linear function.

We evaluate the proposed model, CoSTCo, with extensive ex-

periments on real-world sparse tensors. Our model consistently

outperforms both linear and nonlinear state-of-the-art tensor com-

pletion models. Experiments also show that CoSTCo scales well with
large tensors and is able to learn meaningful representations while

being robust to data sparsity. Besides superior tensor completion

performance, CoSTCo also outperforms state-of-the-art methods

for downstream tasks, such as Point-of-interest (POI) recommen-

dation and spatiotemporal forecasting. We also show CoSTCo can
learn meaningful factors that fit intuitions and prior knowledge. In

summary, our main contributions are as follows:

• We propose a novel nonlinear model for tensor completion

based on convolutional neural network that can learn non-

linear interactions, leverage a low-rank inductive bias, and

scale well with large tensors.

• We conduct extensive tensor completion experiments on six

real world tensors and show that our model has superior per-

formance over state-of-the-art multilinear/nonlinear tensor

completion algorithms.

• We show that our method is capable of outperforming state-

of-the-artmethods for downstream tasks, i.e., point-of-interest

recommendation and spatiotemporal forecasting.

2 RELATEDWORK
Low-rank tensor completion. CANDECOMP/PARAFAC factorization

(CP) [14] and Tucker factorization [40] are classical tensor factoriza-

tion methods, which many low-rank tensor completion algorithms

are based on, such as convex-relaxed tensor completion [12, 28, 35],

completion models for non-negative tensors [36], scalable algo-

rithms for completing incomplete large tensors [1, 4, 18], comple-

tions for streaming tensors [38], completions that can utilize extra

information or auxiliary tensors [17, 30]. Different from these mul-

tilinear models, our model is designed to do nonlinear sparse tensor

completion.

Nonlinear tensor factorization. Recently, nonlinear tensor factor-
ization has gained attention due to its effectiveness at modeling real

world complex tensors. In [15, 16], the authors introduced a series

of kernel based CP models that can capture nonlinear relationships.

Unlike our CoSTCo, these models are not designed for the sparse

tensor completion task and require full observations of the target

tensor. In [22], the authors developed nonlinear matrix factoriza-

tion algorithm based on Gaussian processes. In [11], the authors

proposed to use Gaussian kernels to do tensor factorization. In [42],

the authors proposed an InfTucker model with nonlinearity by ex-

tending probabilistic Tucker model [5] with a nonlinear covariance

function. The InfTucker model cannot scale to large tensors because

of the Kronecker product involved in the training process. A series

of scalable models based on InfTucker are proposed in [47, 48] by

paralleling the computation of the Kronecker product or by avoid-

ing the Kronecker product altogether. Compared to this line of

works, our model neither requires a pre-specified kernel function

nor involves computational expensive optimization procedures.

Neural network matrix/tensor completion. Our CoSTCo model is

distinguished from other neural approaches on 1) its use of convolu-

tion to accurately and efficiently perform tensor completion and 2)

Table 1: Common symbols used in the paper.

Symbol Description

N tensor order

di tensor size in the i-th dimension

T∈ Rd1×···×dN
a tensor of order-N and shape d1 × · · · × dN

Ti1, ...,iN tensor entry value at index (i1, ..., iN)

x , x, X a scalar, a vector, a matrix

Xi, :,X:, j i-th row, j-th column of matrix X
A ∗ B element-wise tensor multiplication

∥T∥2

F Frobenius norm of tensor T

JT the set of all entry indices of the tensor T

its capability of representing general tensors that are order-2, order-

3, or higher. For example, many works [8, 27, 41] have proposed to

replace the linear/multilinear operations in matrix/tensor factor-

ization with multi-layer perceptrons (MLP). However, MLP-based

methods tend to overfit to sparse training data as we will show later

in the experiments section. Another work [19] developed a matrix

completion model which uses CNN to extract features from text

documents for get better semantic features. However, this model

didn’t use CNN for the factorization/completion. [37] combined

neural nets and tensors for knowledge graph reasoning. Compared

to these models, our model is more general and not restricted for

order-3 knowledge graph tensors.

3 PRELIMINARY
3.1 Notations
Table 1 shows commonly used symbols in the paper following the

notations of [21]. We use ed (i) ∈ Rd to denote a one-hot vector of

length-d , where its i-th entry is 1 and all others are 0. For example,

e5(1) = [1 0 0 0 0]T . For an order-N tensor T∈ Rd1×...×dN
,

we use a vector ed1 ...dN (i, . . . , iN)

ed1 ...dN (i1, . . . , iN) =


ed1

(i1)
...

edN (iN)

 ∈ Rd1+· · ·+dN , (1)

as the generalized one-hot embedding of the index tuple (i1, . . . , iN)

of T, called as indexing vectors. We use e(i1, . . . , iN) as the ab-

breviation of ed1 ...dN (i1, . . . , iN) whenever appropriate.

3.2 Tensor Factorization
For simplicity and without loss of generality, we discuss formula-

tions using order-3 tensors. In general, a tensor factorization model

learns the low rank factor matrices from observed entries, and re-

constructs the tensor T ′
from them. The goal is to find accurate

factor matrices such that the reconstructed tensor
ˆT is close to the

target tensor T, i.e., its Frobenius norm, | | ˆT− T||2F , is minimized.

The Frobenius norm of a tensor is defined as

∥T∥2

F =
∑

i1,i2,i3

Ti1,i2,i3
2. (2)

Two major factorization models are CP model and Tucker model.

CP model. Given an order-3 tensor T∈ Rd1×d2×d3
, a rank-r CP

model factorizes it into three factor matrices: U1 ∈ Rr×d1 ,U2 ∈

Rr×d2 ,U3 ∈ Rr×d3
, so that the predicted tensor entry is

ˆTi, j,k =

r∑
t=1

U1

t,iU2

t, jU3

t,k .

The column vectors U1

:,i , U2

:, j , U3

:,k are called as factor vectors.

Tucker model. Given an order-3 tensor T ∈ Rd1×d2×d3
, a rank-

(r1, r2, r3) Tucker model factorizes it into one core tensor G ∈

Rr1×r2×r3
together with three factor matrices: U1 ∈ Rr×d1

, U2 ∈

Rr×d2
, U3 ∈ Rr×d3

, such that the predicted tensor entry is given as

ˆTi, j,k =

r1∑
t1=1

r2∑
t2=1

r3∑
t3=1

Gt1,t2,t3
U1

t1,iU
2

t2, jU
3

t3,k .

3.3 Nonlinear Tensor Factorization
Formulation

Definition 3.1 (Generalized Tensor Factorization Model). Given
an order-N tensor T∈ Rd1×···×dN

, denote JT = {(i1, . . . , iN)|∀i1 ∈

{1, ...,d1}, . . . , iN ∈ {1, ...,dN }} as the set of the indices of all

entries in the tensor. A rank-(r1, . . . , rN) tensor factorization model

consists of a mapping function f : JT→ R with parameter θ and N

factor matricesU1 ∈ Rr1×d1 , . . . ,UN ∈ RrN ×dN
. The reconstructed

tensor
ˆTcan be represented as

ˆTi1, ...,iN = f (i1, . . . , iN ; U1, . . . ,UN ,θ). (3)

Definition 3.2 (Multi-linear Tensor Factorization Model). Assume

a tensor factorization model has a mapping function f with param-

eter θ and factor matrices U1, . . .UN
. It is a multi-linear model if

the following equations hold for any (i1, . . . , iN) ∈ JT

 ∂2 f (i1, . . . , iN ; U1, . . . ,UN ,θ)

∂2U1
:,i1

2

= 0,

. . . ,

 ∂2 f (i1, . . . , iN ; U1, . . . ,UN ,θ)

∂2UN
:,iN

2

= 0.

Definition 3.3 (Nonlinear Tensor Factorization Model). A tensor

factorization model is nonlinear if its mapping function f is not

multi-linear.

4 METHODOLOGY
4.1 The CoSTCoModel
The core structure of CoSTCo is a convolutional neural network.

For a order-N tensor of shape (d1, . . . ,dN), the input of CoSTCo
neural network is an indexing vector x = ed1 ...dN (i1, . . . , iN) and

the output of the neural network is the reconstructed tensor entry

ˆTi1, ...,iN . The neural network contains an embedding module, an

nonlinear mapping module, and final aggregation module. The

model’s architecture is shown in Figure 2.

Embedding module. For a tensor entry at index (i1, . . . , iN), the

embedding module takes an indexing vector x as the input, and

outputs the corresponded factor vectors of these indices. The em-

beddingmodule has a block diagonal matrixM with dimensionNr×∑N
i=1

di , consisting of the N factor matrices, namely U1, . . . ,UN
.

Model Output:

 filter size: (N, 1, 1, n_ch)

filter size: (1, r, n_ch, n_ch)

Embedding
module

Nonlinear mapping
module

Aggregation
module

Agg(·)

conv
direction

Flatten(·)

Model Input:

1st layer filters
size: N X 1

2nd layer filters
size: 1 X r

conv
direction

Figure 2: Model architecture of CoSTCo.

The same rank r is used acrossed all factor matrices. More specifi-

cally, we have

H
′

emb
= Mx = Med1,d2, ...,dN (i1, i2, . . . , iN)

=


U1

U2

. . .

UN




ed1
(i1)

ed2
(i2)
...

edN (iN)


=


U1

:,i1
U2

:,i2
...

UN
:,iN


H

′

emb
= Reshape(H

′

emb
) ∈ R1×r×N

(4)

The module’s output H
emb

is constructed by reshaping a vector

H
′

emb
∈ RrN×1

into a 1 × r × N tensor.

Nonlinear mapping module. The mapping module consists of two

2D convolution layers, one with filter size (r , 1) and another with fil-
ter size (1,N). LetC be the number of channels in the convolutional

layers and θ1,θ2 are convolution filters of the two convolution

layers. Both layers have nonlinear activation function σ (·). For ex-
ample, if we choose the ReLU function, then σ = max(·, 0). The

output of convolution module is
4

H1

conv
= σ (Conv(H

emb
;θ1)) ∈ R

C×1×N

H2

conv
= σ (Conv(H1

conv
;θ2)) ∈ R

C×1×1

(5)

Aggregation module. The aggregation module takes an C × 1 × 1

tensor as its input, flattens it into a length-C vector, aggregates it

by some predefined aggregation function, and outputs one scalar.

The aggregation function can be a fully-connected neural network

layer, or simply outputs the average of the input vector. Denote θa
as the potential parameter of the aggregation module. The output

of aggregation module can be written as

y = ˆTi1, ...,iN = Agg(H2

conv
;θa) ∈ R. (6)

In summary, a rank-r CoSTCo model is a generalized tensor fac-

torization model represented by a neural network, which stores the

factor matrices in the embedding module, and has a mapping func-

tion y = f (x ; U1, . . . ,UN , {θ1,θ2,θa }) composed of the mapping

and aggregation module defined by eqs. (5) and (6). We use f (x ; ·)

for simplicity whenever possible.

4
We use the channel-first notation for 2d convolution operations.

4.2 Optimization and Generalization of CoSTCo
Suppose the target tensor is Tand the reconstructed one is ˆT. Let the

training set be S = {(x ,y)|x ∈ JT,y ∈ R} where x is an index and

y is the observed tensor entry. The loss function of a reconstructed

tensor
ˆT is the Frobenius norm of the difference between it and the

target tensor T,

 ˆT− T

2

F
. In the sparse observation setting where

only parts of the tensor entries are observed, the loss function

is

O ∗ (ˆT− T)

2

F
. The value of Oi1, ...,iN equals to 1 if the index

(i1, . . . , iN) is observed in S and otherwise 0. The loss function is

the same as the mean squared error.

Loss =

O ∗ (ˆT− T)

2

F
=

∑
(x,y)∈S

(
f (x ; ·) − y

)
2

. (7)

Denote the regularization loss is R(U1, . . . ,UN ,θ1,θ2,θa). The
overall objective function of CoSTCo is

Loss =
∑

(x,y)∈S

(
f (x ; ·) − y

)
2

+ R(U1, . . . ,UN ,θ1,θ2,θa) (8)

Inspired by a series of work [7, 13] which showed shallow neural

networks have nice theoretical guarantees, we prove that a shallow

version of CoSTCo (Definition is in Appendix B) is equivalent to

an specific neural architecture which has nice guarantees of both

optimization and generalization. We state the main result in The-

orem 4.1. The idea is that if CoSTCo only uses one convolutional

layer, we can squeeze its embedding module and the nonlinear map-

ping module into one neural network layer. Hence, with sum/mean

function as the aggregation function, the shallow version of CoSTCo
falls into a category of one-layer neural networks which has been

proven to have the nice properties. Proof is in Appendix B.

Theorem 4.1. Consider a tensor completion task over a order-N
target tensor T ∈ Rd1×···×dN . A sparse training set S is given and
|S | = O(

∑N
i=1

di) . Each data point (x,y) in training set S is sampled
i.i.d. from some distribution P where x is represented by an indexing
vector x = ed1, ...,dN (i1, . . . , iN) and y is the observed tensor entry
Ti1, ...,iN . Under mild conditions, the shallow version of CoSTCo falls
into a nice set of shallow nets whose the objective function, if trained
with weight decay, satisfies

• (Optimization) All local minima are global minima and all
saddle points are strict saddle points.

• (Generalization) With high probability, the generalization er-

ror is bounded by O
(√

log

∑N
i=1

di/|S |

)
.

4.3 Parameter Efficiency of CoSTCo
The core idea behind CoSTCo is that it uses a parameter-efficient

mappingmodule tomodel the nonlinear interaction function among

factor matrices. Comparing to fully-connected (FC) layers, the con-

volutional layers, due to its parameter sharing scheme and CoSTCo’s
unique filter shapes, intuitively forces the embedding module effi-

ciently learns generalizable and informative factor matrices.

The compact representation of the nonlinear function is impor-

tant, especially for neural nets which have been shown to be capable

of memorizing even random labels with enough parameters [46].

Failing to learn the compact representation could lead to a unde-

sirable situation where the nonlinear mapping module can have

enough parameters to memorize the training data even when the

embedding module has not found good factors. Section 5.1 shows

with a fixed randomly initialized embedding module, a model using

FC layers in its mapping module can memorize and overfit the

training data while CoSTCo doesn’t suffer from this issue.

One reason is that a FC layer can have much more parameters

than a convolutional layer. Assume the target tensor is a order-

N tensor of shape (d1, . . . ,dN). The first convolutional layer of

CoSTCo outputs haveC×r units5 whereC is the number of channels.

The convolutional layer has (1 × C) × (1 × N) = CN parameters.

However, the FC layer with the same output size will have (N ×

r) × (N ×C) = rCN 2
parameters, which is rN times larger.

Besides, CoSTCo can’t work well without learning a good embed-

ding module, because the number of parameters in other modules

is limited. For the architecture used in Section 5.2, the total amount

of parameters will be

r × N × ¯d︸ ︷︷ ︸
embedding

+

1st conv layer︷ ︸︸ ︷
1 ×C × (r × 1)+

2nd conv layer︷ ︸︸ ︷
C ×C × (1 × N)︸ ︷︷ ︸

nonlinear mapping

+ C ×C︸︷︷︸
aggregation

where
¯d is the average length per mode (

∑N
i=1

dt)/N . and if we

set C = r , the number of parameters in the mapping module and

the aggregation module is approximately r2N . Comparably, the

embedding module will have rN ¯d parameters. In low-rank settings,

we usually have
¯d ≫ r . The number of parameters in the embedding

module is much larger than those in the rest modules.

CoSTCo learns an informative factors because of the specific

shape of the convolutional filters used. Recall that its first convo-

lutional layer uses a filter of shape (N , 1), so its k-th output will

be computed from U1

ki1 ,U
2

ki2 , . . . ,U
N
kiN with some function д.

Intuitively, functions such as д will force the factors to be “aligned”

in each dimension. Aligning factors to dimensions is how multilin-

ear methods themselves learn informative factors, which are often

extracted in factorization-based latent semantic indexing [6]. We

provide evidence that our CoSTCo model indeed finds informative

factors in Section 5.4.

5
We ignore the biases terms for both convolutional layers and fully-connected layers.

0.4

0.6

0.8

1.0

1.2

1.4

M
S

E

Training Loss | Learnable Factors Validation Loss | Learnable Factors

0 200 400 600 800 1000
epochs

0.4

0.6

0.8

1.0

1.2

1.4

M
S

E

Training Loss | Fixed Factors

0 200 400 600 800 1000
epochs

Validation Loss | Fixed Factors

CoSTCo
MLP

Figure 3: Training/Validation MSE v.s. epochs curves col-
lected in a synthetic tensor. MLP can overfit the data even
with fixed random factor matrices. CoSTCo is less likely to
overfit and CoSTCo gets worse results when the factor matri-
ces are randomly initialized and not trainable.

5 EXPERIMENTS
We conduct extensive experiments to answer the following ques-

tions regarding CoSTCo:

• Can the parameter sharing scheme of the convolutional lay-

ers in CoSTCo reduce overfitting on training data?

• Can CoSTCo outperform other state-of-the-art linear/nonlinear

completion models for the sparse tensor completion task?

• Does CoSTCo work for downstream tasks of tensor comple-

tion, such as recommendation?

• Does CoSTCo learn meaningful factor matrices?

We answer these questions in the following sections. Detailed infor-

mation about datasets and implementation are provided in Appen-

dix A.1. Our code is released at https://github.com/USC-Melady/

KDD19-CoSTCo.

5.1 Overfitting Experiment
We conduct experiments on a synthetic tensor to show the benefits

of convolutional layers. We compare CoSTCo to a similar model

(MLP) based on fully-connected layers. Both models have the same

numbers of hidden neurons. We run experiments on two settings:

whether the factor matrices of the model are learn-able or not (fixed

random vectors).

Figure 3 shows the results. Similar to what we have discussed, the

MLP model can easily overfit the training data even with randomly

initialized factor matrices, as it already has enough parameters in

the nonlinear mapping module to memorize the data. In compari-

son, CoSTCo is more robust to overfitting with a much smaller gap

between the training and the validation loss than MLP.

5.2 Sparse Tensor Completion
Datasets.We evaluated our proposed models on the sparse tensor

completion tasks using six tensors from real-world data whose

https://github.com/USC-Melady/KDD19-CoSTCo
https://github.com/USC-Melady/KDD19-CoSTCo

Table 2: Statistics of data in sparse tensor completion task.

Dataset Shape #Observed entries

MovingMNIST (20, 100, 64, 64) 819200

ExtremeClimate (16, 360, 768, 1152) 41180

Traffic (2713, 31, 24, 12, 3) 218491

Traffic Sparse (2713, 31, 24, 12, 3) 50848

SG (2321, 5596, 1600) 105764

Gowalla (18737, 32510, 1000) 821931

statistics are shown in Table 2. Details of these tensors are in Ap-

pendix A.2. In short, we have MovingMNIST [39] (MM), a order-4

tensor of 20 grayscale videos. ExtremeClimate [32] (EC), a order-4

tensor recording 16 climate variables all around the world for 90

days. Traffic [25] (TR), a order-5 tensor recording outputs of high-

way sensors. Traffic Sparse (TRs): sparser version of the Traffic

tensor. SG [23], Gowalla [29]: two order-3 tensors constructed from

Point-of-interest (POI) check-in records.

Baseline methods.We compare CoSTCo to other state-of-the-art

sparse tensor completion models. Both linear models and nonlin-

ear models are included for complete comparison. All the baseline

methods chosen are designed for sparse tensors. To the best of our

knowledge, CoSTCo is the first nonlinear approach that utilizes the

convolutional neural network tomodel nonlinear interactions while

preserving the low-rank structure of data. The baseline methods are

summarized as follows. (1) CP-WOPT [1]: a weighted optimization

version of CP factorization for sparse tensor completion. (2) CP-

SPALS [4]: an improved fast CP factorization model with implicit

leverage scores based ALS solver. (3) P-Tucker [31]: an improved

scalable Tucker model with fully paralleled row-wise updating rule.

(4) NeuralCP [27]: a Bayesian tensor factorization framework that

uses MLP (Multi-Layer Perceptron) to model the nonlinear inter-

actions among tensor factors. (5) DFNT [48]: a scalable Bayesian

nonlinear Tucker model based on tensor-variant Gaussian Process

with infinite high-order kernels. (6) NTN [37]: a neural network

with tensor multiplication layer for modeling 3d tensor.

Evaluation.We evaluate the performance of these methods based

on three popular regression metrics. Suppose there are n entries in

the test set. Suppose the ground truth of values are y = (y1, . . . ,yn)
and the model’s predictions are ŷ = (ŷ1, . . . , ŷn). We use MAE

(Mean absolute error), RMSE (Rooted mean squared error), MAPE

(Mean absolute percentage error) to measure the models’ perfor-

mances. More details can be found in Appendix A.3.

Hyper-parameter settings. We train our proposed model with

Adam [20] method for 50 epochs. We use learning rate of 1e-4 and

batch size of 32. We use 10% of the training data as the validation

data and do early-stopping over validation MAE with 10 patient

epochs. More information is in Appendix A.1.

Figure 4 shows the models’ performance of the three tensors

sampled from MovingMNIST dataset with different observation

ratios (0.03, 0.1, 0.3), i.e., percentage of entries sampled from the

original tensor. We show the results of models tested on different

sparsity ratios with different factorization ranks. Despite that CP-

SPALS tends to have smaller MAE values, we found that it gets

the results by predicting too many zeros. CoSTCo almost always

0.150

0.175

0.200

0.225

0.250

R
M

S
E

observation ratio=3.0% observation ratio=10.0% observation ratio=30.0%
CoSTCo
CP-SPALS
CP-WOPT
DFNT
P-Tucker

3 5 7 9
rank

0.06

0.08

M
A

E

3 5 7 9
rank

3 5 7 9
rank

Figure 4: Tensor completion results of MovingMNIST. We
collect results on three tensor subsampled from the original
MovingMNIST data tensor with different observation ratios
(0.03, 0.1, 0.3). We use different factorization ranks to check
how models’ predictions change. CP-SPALS gets very small
MAEs but very high RMSEs because the data has many zero
entries and CP-SPALS predicts lots of zeros.

outperforms baselinemethods, and the performance increases when

the factorization rank increases. For the tensor of observation ratio

0.03, we observe one anomaly that the models’ RMSE performance

decreases with higher ranks. A potential reason is that we used the

same hyper-parameters across all experiments thus the model may

not be fully tuned to that dataset. We also observe that with larger

observation ratio, the performance of CoSTCo increases faster than

other baseline methods, showing the efficiency of CoSTCo.
Table 3 shows the tensor completion results of two POI tensors.

We include the results of NTN baseline
6
as these are 3D tensors.

We omit some values of CP-SPALS for some experiments, as it has

numerical issues (it outputs NaN) when the input tensors are very

sparse and the rank is small. One interesting observation is that the

performances of all models do not increase with higher ranks. The

problem is that the training samples are very limited so that models

can easily overfit the training data with higher ranks. CoSTCo shows
its robustness: it achieves good performance with a lower rank and

remains stable (less overfitting) when the rank increases.

Table 4 shows the tensor completion results on spatiotempo-

ral datasets. We also include the training RMSE to highlight the

overfitting issue. Both DFNT and P-Tucker get worse test perfor-

mance when the factorization rank increases: with a higher rank,

DFNT has a training problem and P-Tucker suffers from overfit-

ting. The phenomenon is more significant for the Gowalla tensor

which is much larger and sparser. Instead, CoSTCo does not suffer
from this problem. For the Traffic and ExtremeClimate tensors, the

performances of CoSTCo remain stable outperforming all baselines

when of the factorization rank increases, implying CoSTCo is able
to learn a good representation with small ranks. The results show

that CoSTCo is efficient and robust to model a complex tensor with

6
NTN doesn’t treat each dimension equally. We use user and location as the two

entities and the POI as the relation and the value of the tensor entry is the strength of

the relation between the two entities.

Table 3: Tensor completion results of two POI tensors.

metric RMSE MAE MAPE (%)

data model/rank 20 40 60 80 20 40 60 80 20 40 60 80

SG NeuralCP 0.1784 0.1748 0.1716 0.1633 0.1004 0.0920 0.0907 0.0840 64.12 54.76 54.26 47.87

CP-SPALS - 0.2273 0.2259 0.2257 - 0.1610 0.1595 0.1594 - 100.0 98.93 98.95

NTN 0.1601 0.1643 0.1832 0.1698 0.0855 0.0918 0.1134 0.1023 50.78 57.25 77.28 67.59

DFNT 0.2033 0.2270 0.2271 0.2271 0.1242 0.1608 0.1610 0.1610 69.22 99.84 99.99 99.99

P-Tucker 0.3744 0.3227 0.3337 0.4168 0.2202 0.2022 0.2017 0.2087 162.4 146.2 144.8 148.5

CoSTCo 0.1546 0.1546 0.1546 0.1544 0.0798 0.0786 0.0776 0.0776 44.53 42.92 41.53 41.54

Gowalla NeuralCP 0.1402 0.1437 0.1528 0.1466 0.0743 0.0734 0.0811 0.0769 48.54 46.50 54.75 50.35

CP-SPALS - - - 0.1966 - - - 0.1456 - - - 99.87

NTN 0.1381 0.1690 0.1667 0.1580 0.0788 0.1107 0.1125 0.1045 53.60 84.22 87.18 79.05

DFNT 0.1486 0.1965 0.1968 0.1968 0.0775 0.1455 0.1458 0.1458 44.19 99.74 99.99 100.0

P-Tucker 0.2972 0.2445 0.2323 0.2333 0.1703 0.1496 0.1391 0.1338 130.4 111.4 102.0 97.17

CoSTCo 0.1281 0.1278 0.1279 0.1282 0.0623 0.0624 0.0620 0.0623 35.95 36.02 35.59 35.86

Table 4: Tensor completion results of three spatio-temporal tensors.

metric RMSE (Train) RMSE MAE MAPE (%)

data model/rank 5 10 20 5 10 20 5 10 20 5 10 20

TR NeuralCP 0.0638 0.0523 0.0415 0.0694 0.0622 0.0614 0.0406 0.0352 0.0332 18.66 15.75 14.84

CP-SPALS 0.4375 0.4359 0.4352 0.4367 0.4357 0.4357 0.3131 0.3124 0.3124 77.71 77.49 77.49

DFNT 0.1593 0.1774 0.3617 0.1591 0.1776 0.3611 0.1219 0.1305 0.2558 58.43 51.06 61.52

P-Tucker 0.0609 0.0480 0.0374 0.0691 0.0641 0.0820 0.0429 0.0375 0.0467 20.77 16.94 19.49

CoSTCo 0.0573 0.0482 0.0446 0.0640 0.0586 0.0568 0.0369 0.0322 0.0303 16.94 14.05 13.16

TR-s NeuralCP 0.0617 0.0540 0.0509 0.0791 0.0813 0.0815 0.0478 0.0451 0.0469 21.46 19.57 20.73

CP-SPALS 0.4382 0.4378 0.4362 0.4387 0.4387 0.4387 0.3151 0.3151 0.3151 77.95 77.95 77.95

DFNT 0.1844 0.2061 0.4298 0.1849 0.2061 0.4304 0.1427 0.1549 0.3087 65.08 56.69 75.86

P-Tucker 0.0495 0.0469 0.0155 0.1230 0.6164 0.9875 0.0662 0.2593 0.4016 27.27 89.42 212.82

CoSTCo 0.0606 0.0576 0.0594 0.0805 0.0796 0.0776 0.0459 0.0442 0.0435 20.54 19.60 19.27

EC NeuralCP 0.0463 0.0452 0.0357 0.0632 0.0621 0.0659 0.0354 0.0349 0.0363 7.65 7.59 8.07

CP-SPALS - - 0.8276 - - 0.8309 - - 0.8030 - - 98.44

DFNT 0.2246 0.3274 0.7952 0.2295 0.3328 0.7987 0.1854 0.2802 0.7706 30.30 44.53 93.88

P-Tucker 0.0311 0.0200 0.0104 0.0786 0.0996 0.1247 0.0449 0.0584 0.0832 10.01 14.24 18.60

CoSTCo 0.0522 0.0529 0.0531 0.0631 0.0622 0.0609 0.0347 0.0341 0.0333 7.63 7.51 7.28

a small factorization rank. NeuralCP shows competitive results on

these three datasets. Although NeuralCP has much more param-

eters than CoSTCo, CoSTCo obtains better performance, since the

mapping function used in CoSTCo is more compact while the one

used in NeuralCP has many redundant connections.

5.3 Downstream Tasks
We consider two downstream tasks related with tensor completion:

POI recommendation and spatiotemporal forecasting.

POI recommendation. We evaluate CoSTCo on the POI recom-

mendation task. POI recommendation requires a model to predict

the user’s preferences over POIs based on latent features and geo-

graphical features. We compare CoSTCo with the state-of-the-art

POI recommendation algorithm, RankGeoFM [23], over the SG and

Gowalla datasets. RankGeoFM is an extension of GeoMF [26], a

matrix factorization model jointly modeling the latent features and

geographical influences, by training the model with pairwise rank-

ing based objective functions to resolve the data sparsity problem.

We use the same pairwise ranking based objective function to

train CoSTCo. Training details can be found in Appendix A.3. For

RankGeoFM, we use the implementation provided by the authors
7
.

For both models, we use the same hyper-parameters as described

in [23]: factorization rank of 100, pairwise ranking margin of 0.3.

The result is shown in Figure 5. Our model achieves much better

results than RankGeoFM, showing that CoSTCo is capable of auto-
matically discovering the geographical influence from the checkin

tensor without relying too much on manually designed features.

Spatiotemporal forecasting. Spatiotemporal forecasting is an im-

portant task which has many real-world applications. It requires

7
http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/

http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/

5 10 15 20
0.03

0.04

0.05

P
re
ci
si
on
@
k

dataset=Gowalla

5 10 15 20

0.08

0.10

dataset=SG

CoSTCo
RankGeoFM

5 10 15 20
k

0.04

0.06

0.08

0.10

R
ec
al
l@
k

5 10 15 20
k

0.06

0.08

0.10

0.12

0.14

Figure 5: POI recommendation results of two POI checkin
datasets. Best viewed in color.

Table 5: Forecasting RMSE on the climate dataset.

Method Greedy MLGP MOGP MLMTL CoSTCo

RMSE 0.9069 0.8973 0.9273 0.9528 0.8693

a model to predict future values based on past observations. Spa-

tiotemporal forecasting is often formalized as a tensor learning [3,

45] or multi-task learning [34]. We use the climate data used in [3],

which records the values of 17 different climate variables in 125

locations monthly for 13 years with missing data interpolated. The

data is a tensor of size 17 × 125 × 156. For each variable, we nor-

malize it to have zero mean and unit variance. We split the dataset

80%/20% by time to the training/testing dataset.

Though CoSTCo is designed for tensor completion, it can be

extended to predict entries of future time steps for the climate

forecasting task. The first trick is to do a time-index split. A natural

observation of climate data is that it contains annual periodicity.

To model this periodicity, we reshape the original mode-3 tensor to

a mode-4 tensor, by splitting its time index into both a yearly index

and a monthly index. By doing this, the information inside each

mode is more distinguishable, so factor interactions will be simpler

and more easily captured. Another one is applying a regularization

over the factor matrices in the time dimension such that the factor

vectors of two nearby months or years are close.

We compare our methods to a set of baselines on this dataset:

(1) Greedy tensor learning (Greedy) [3]: a fast tensor learning algo-

rithm for multivariate spatiotemporal forecasting. (2) MLGP [44]:

tensor regression with Gaussian process. (3) MOGP [2]: multi-

output Gaussian process. (4) MLMTL [34]: multi-task learning with

trace norm optimization. Table 5 shows the RMSE of different ap-

proaches. Comparing to other multilinear methods, CoSTCo clearly

achieves improved performance.

5.4 Visualization of Learned Factors
To further understand the model learned by CoSTCo, we visualize its
learned factors. Figure 6a shows pairwise cosine similarities among

Ja
n
FebMar Apr

MayJu
n Ju

l
AugSepOct

NovDec

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

0.2

0.4

0.6

0.8

C
os

in
e

S
im

ila
rit

y

(a) Similarity heatmap
among “months” factors
learned from the climate
forecasting tensor.

6a
m

8a
m

10
am

12
pm2p

m
4p

m
6p

m
8p

m
10

pm
12

am2a
m

4a
m

6am
8am

10am
12pm

2pm
4pm
6pm
8pm

10pm
12am

2am
4am

0.0

0.1

0.2

0.3

0.4

0.5

C
os

in
e

S
im

ila
rit

y

(b) Similarity heatmap among
“hours” factors learned from the
traffic tensor.

Figure 6: Pairwise cosine similarities among factors learned
in some temporal dimensions.

20 80
rank

0

10

20

30

40

tim
e

(m
in

ut
es

)

dataset = SG

CoSTCo
DFNT
P-Tucker
NeuralCP
NTN

20 80
rank

0

100

200

300

400

500

dataset = Gowalla

Figure 7: Running time of different completion methods.

temporal (monthly) factors learned from the climate forecasting

tensor. Intuitively, the four dark blocks in the heat map suggest that

the learned monthly temporal factors capture seasonal changes

inside the climate data. Figure 6b also shows such similar behav-

ior among factors of non-rush hours (9pm to 5am) and factors of

working hours (8am to 7pm). Intuitively, the traffic factors learned

by CoSTCo could be capturing the traffic patterns associated with

rush hours and non-rush hours.

5.5 Running Time Comparison
The training time of CoSTCo is linear w.r.t. the number of observa-

tions and is irrelevant to the size of the target tensor and doesn’t

involve complex tensor operations. Figure 7 shows the running

time of each method in the tensor completion task over the SG and

Gowalla tensors. Gowalla is a larger and sparser tensor than SG.

We find that CoSTCo runs fastest in most cases. Besides, its running

time does not increase drastically as P-Tucker/NTN does, which

both require tensor operations. All the experiments are run in the

same machine with 32-core Intel(R) Xeon(R) CPU E5-2640 and 256G

memory. The architectures of neural network models are shown in

Appendix A.1 and we use early-stopping during training.

6 CONCLUSION
We proposed CoSTCo, a carefully designed convolution based model

for nonlinear sparse tensor completion. CoSTCo efficiently captures

the nonlinear interactions and has an inductive bias to learn general-

izable and informative factors. Extensive experiments on real-world

tensor completion datasets showed CoSTCo achieved better perfor-

mance than state-of-the-art linear/nonlinear completion methods.

Besides, CoSTCo outperformed corresponding state-of-the-art mod-

els on downstream tasks. For future work, we will investigate the

following directions: 1) provide interpretations of the inferred latent

factors, 2) investigate theoretical properties for CoSTCowith deeper

neural networks and general activation functions, 3) generalize

CoSTCo for non-linear Tucker decomposition while preserving the

low-rank property, 4) extend CoSTCo with more downstream tasks,

such as image inpainting or streaming tensor completion.

7 ACKNOWLEDGMENTS
We are very thankful to Umang Gupta, Dehua Cheng and anony-

mous reviewers for their thoughtful advice. This research has been

funded in part by NSF grants IIS-1254206, IIS-1539608, USC Annen-

berg Graduate Fellowship to Yaguang Li and Michael Tsang. Any

opinions, findings, and conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of any of the sponsors such as NSF.

REFERENCES
[1] Evrim Acar, Daniel M Dunlavy, Tamara G Kolda, and Morten Mørup. 2011. Scal-

able tensor factorizations for incomplete data. Chemometrics and Intelligent
Laboratory Systems 106, 1 (2011), 41–56.

[2] Mauricio A Álvarez and Neil D Lawrence. 2011. Computationally efficient con-

volved multiple output gaussian processes. JMLR 12, May (2011), 1459–1500.

[3] Mohammad Taha Bahadori, Qi Rose Yu, and Yan Liu. 2014. Fast multivariate

spatio-temporal analysis via low rank tensor learning. In NIPS. 3491–3499.
[4] Dehua Cheng, Richard Peng, Yan Liu, and Ioakeim Perros. 2016. SPALS: Fast

alternating least squares via implicit leverage scores sampling. In NIPS. 721–729.
[5] Wei Chu and Zoubin Ghahramani. 2009. Probabilistic models for incomplete

multi-dimensional arrays. In AISTATS. 89–96.
[6] Chris Ding, Tao Li, and Wei Peng. 2006. Nonnegative matrix factorization and

probabilistic latent semantic indexing: Equivalence chi-square statistic, and a

hybrid method. In AAAI, Vol. 42. 137–143.
[7] Simon S Du and Jason D Lee. 2018. On the Power of Over-parametrization

in Neural Networks with Quadratic Activation. In International Conference on
Machine Learning. 1328–1337.

[8] Gintare Karolina Dziugaite and Daniel M Roy. 2015. Neural network matrix

factorization. arXiv preprint arXiv:1511.06443 (2015).
[9] Martin Ester et al. 1996. A density-based algorithm for discovering clusters in

large spatial databases with noise.. In KDD, Vol. 96. 226–231.
[10] Martín Abadi et al. 2016. TensorFlow: Large-Scale Machine Learning on Hetero-

geneous Systems. In OSDI. Software available from tensorflow.org.

[11] Xiaomin Fang, Rong Pan, Guoxiang Cao, Xiuqiang He, and Wenyuan Dai. 2015.

Personalized Tag Recommendation through Nonlinear Tensor Factorization Us-

ing Gaussian Kernel.. In AAAI. 439–445.
[12] Silvia Gandy, Benjamin Recht, and Isao Yamada. 2011. Tensor completion and

low-n-rank tensor recovery via convex optimization. Inverse Problems 27, 2 (2011),
025010.

[13] BenjaminHaeffele, Eric Young, and Rene Vidal. 2014. Structured Low-RankMatrix

Factorization: Optimality, Algorithm, and Applications to Image Processing. In

ICML. 2007–2015.
[14] Richard A Harshman. 1970. Foundations of the PARAFAC procedure: Models

and conditions for an" explanatory" multimodal factor analysis. (1970).

[15] Lifang He, Xiangnan Kong, Philip S Yu, Xiaowei Yang, Ann B Ragin, and Zhifeng

Hao. 2014. Dusk: A dual structure-preserving kernel for supervised tensor

learning with applications to neuroimages. In SDM. SIAM, 127–135.

[16] Lifang He, Chun-Ta Lu, Guixiang Ma, Shen Wang, Linlin Shen, S Yu Philip, and

Ann B Ragin. 2017. Kernelized support tensor machines. In ICML. 1442–1451.
[17] Joyce C Ho, Joydeep Ghosh, and Jimeng Sun. 2014. Marble: high-throughput

phenotyping from electronic health records via sparse nonnegative tensor fac-

torization. In KDD. ACM, 115–124.

[18] U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. 2012.

Gigatensor: scaling tensor analysis up by 100 times-algorithms and discoveries.

In KDD. ACM, 316–324.

[19] Donghyun Kim, Chanyoung Park, Jinoh Oh, Sungyoung Lee, and Hwanjo Yu.

2016. Convolutional matrix factorization for document context-aware recom-

mendation. In RecSys. ACM, 233–240.

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[21] Tamara GKolda and BrettWBader. 2009. Tensor decompositions and applications.

SIAM review 51, 3 (2009), 455–500.

[22] Neil D Lawrence and Raquel Urtasun. 2009. Non-linear matrix factorization with

Gaussian processes. In ICML. ACM, 601–608.

[23] Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-

naswamy. 2015. Rank-geofm: A ranking based geographical factorization method

for point of interest recommendation. In SIGIR. ACM, 433–442.

[24] Xutao Li, Yunming Ye, and Xiaofei Xu. 2017. Low-rank tensor completion with

total variation for visual data inpainting. In Thirty-First AAAI Conference on
Artificial Intelligence.

[25] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolutional

recurrent neural network: Data-driven traffic forecasting. In ICLR.
[26] Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong

Rui. 2014. GeoMF: joint geographical modeling and matrix factorization for

point-of-interest recommendation. In KDD. ACM, 831–840.

[27] Bin Liu, Lirong He, Yingming Li, Shandian Zhe, and Zenglin Xu. 2018. NeuralCP:

Bayesian Multiway Data Analysis with Neural Tensor Decomposition. Cognitive
Computation 10, 6 (2018), 1051–1061.

[28] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. 2013. Tensor comple-

tion for estimating missing values in visual data. PAMI 35, 1 (2013), 208–220.
[29] Yiding Liu, Tuan-Anh Nguyen Pham, Gao Cong, and Quan Yuan. 2017. An

experimental evaluation of point-of-interest recommendation in location-based

social networks. VLDB 10, 10 (2017), 1010–1021.

[30] Atsuhiro Narita, Kohei Hayashi, Ryota Tomioka, and Hisashi Kashima. 2012.

Tensor factorization using auxiliary information. Data Mining and Knowledge
Discovery 25, 2 (2012), 298–324.

[31] Sejoon Oh, Namyong Park, Sael Lee, and U Kang. 2018. Scalable tucker factoriza-

tion for sparse tensors-algorithms and discoveries. In ICDE. IEEE, 1120–1131.
[32] Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Ebrahimi Kahou, Mr

Prabhat, and Chris Pal. 2017. ExtremeWeather: A large-scale climate dataset for

semi-supervised detection, localization, and understanding of extreme weather

events. In NIPS. 3402–3413.
[33] Steffen Rendle and Lars Schmidt-Thieme. 2010. Pairwise interaction tensor

factorization for personalized tag recommendation. In WSDM. ACM, 81–90.

[34] Bernardino Romera-Paredes, Hane Aung, Nadia Bianchi-Berthouze, and Massim-

iliano Pontil. 2013. Multilinear multitask learning. In ICML. 1444–1452.
[35] Bernardino Romera-Paredes and Massimiliano Pontil. 2013. A new convex

relaxation for tensor completion. In NIPS. 2967–2975.
[36] Amnon Shashua and Tamir Hazan. 2005. Non-negative tensor factorization with

applications to statistics and computer vision. In ICML. ACM, 792–799.

[37] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. 2013.

Reasoning with neural tensor networks for knowledge base completion. In NIPS.
926–934.

[38] Qingquan Song, Xiao Huang, Hancheng Ge, James Caverlee, and Xia Hu. 2017.

Multi-aspect streaming tensor completion. In Proceedings of the 23rd ACMSIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 435–

443.

[39] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. 2015. Unsuper-

vised learning of video representations using lstms. In ICML. 843–852.
[40] Ledyard R Tucker. 1966. Some mathematical notes on three-mode factor analysis.

Psychometrika 31, 3 (1966), 279–311.
[41] XianWu, Baoxu Shi, Yuxiao Dong, Chao Huang, and Nitesh Chawla. 2018. Neural

Tensor Factorization. arXiv preprint arXiv:1802.04416 (2018).
[42] Zenglin Xu, Feng Yan, et al. 2011. Infinite Tucker decomposition: Nonparametric

Bayesian models for multiway data analysis. arXiv:1108.6296 (2011).
[43] Rose Yu, Dehua Cheng, and Yan Liu. 2015. Accelerated online low rank tensor

learning for multivariate spatiotemporal streams. In ICML. 238–247.
[44] Rose Yu, Guangyu Li, and Yan Liu. 2018. Tensor Regression Meets Gaussian

Processes. In AISTATS. 482–490.
[45] Rose Yu and Yan Liu. 2016. Learning from multiway data: Simple and efficient

tensor regression. In ICML. 373–381.
[46] Chiyuan Zhang et al. 2016. Understanding deep learning requires rethinking

generalization. arXiv preprint arXiv:1611.03530 (2016).
[47] Shandian Zhe, Zenglin Xu, Xinqi Chu, Yuan Qi, and Youngja Park. 2015. Scalable

nonparametric multiway data analysis. In AISTATS. 1125–1134.
[48] Shandian Zhe, Kai Zhang, PengyuanWang, Kuang-chih Lee, Zenglin Xu, Yuan Qi,

and Zoubin Ghahramani. 2016. Distributed flexible nonlinear tensor factorization.

In NIPS. 928–936.

APPENDIX
A EXPERIMENTAL DETAIL
A.1 Implementation and Hyper-parameters
We implement the experiments with TensorFlow [10]. For all the

experiments, we use the Adam [20] optimizer with the default

hyper-parameters to train neural networks. The hyper-parameters

are shown in the Table A1. We use pairwise ranking loss A.1 to

train the model for the POI recommendation task. For the climate

forecasting task, we use weight decay of 0.0001.

Sparse tensor completion experiments. The aggregation modules

used are MLPs, which have nc units in the hidden layer and 1 unit

in the output layer. nc is the number of convolutional channels.

For SG/Gowalla, nc equals to the model’s rank. For TR/TR-s/EC,

nc equals to the double of the model’s rank. For NeuralCP, we re-

place the convolutional layers with FC layers such that the output

sizes are the same. We run with different random seeds and re-

port the average scores. We initially tune the hyper-parameters of

NeuralCP, NTN and CoSTCo, and keep the hyper-parameters con-

sistent among methods for all experiments. We found that when

we tune these methods independently, CoSTCo still consistently

outperforms the baselines. For the rest of the baselines, we use

default hyper-parameters if any.

Ranking loss in POI recommendation task. We train CoSTCo us-

ing the same pairwise ranking loss as RankGeoMF [23] does. More

specifically, each train data contains two tensor entries (u, POI1, LOC1),

(u, POI2, LOC2), and the values y1,y2. Assume the model’s predic-

tion is y′
1
,y′

2
. The loss is loss = I (y′

1
≤ y′

2
+ ϵ)I (y1 ≥ y2). I is

the indicator function such that I (true = 1), I (false = 0). The pa-

rameter ϵ is served as a margin and potentially can help model’s

generalization. We use ϵ = 0.3 as indicated in [23].

Table A1: Hyper-parameter settings.

Dataset lr epochs batch size

MovingMNIST 0.001 200 64

Gowalla/SG/TR/TRs/Ec 0.0001 50 32

POI reco 0.1 500 256

Climate Forecasting 0.03 1000 1024

A.2 Datasets
MovingMNIST [39] (MM): a dataset of 20 videos about moving

numbers. Each video is a 3d tensor and each frame is a grey-scale

2d image. We sample 100 frames from all 10000 frames for each

video. Each tensor index is (video_id, time_id, row_id, column_id).

ExtremeClimate [32] (EC): a climate dataset of 4d tensors, record-

ing 16 different climate variables all over the world. We use the data

from 1989’s first three months and sample 0.05% observations to

construct the tensor. The values of variables’ measurements differ

a lot, so we normalize the data per variable by first subtracting

the minimal value of that variable, adding one to all values, then

taking the log function, and finally dividing it by the maximum

value of that variable. Each tensor index is (time_id, latitude_id,

longitude_id, variable_id).

Traffic [25] (TR): a dataset of sensor data collected from intersec-

tions of LA highways. The data is collected from all sensors every 5

minutes. Each sensor reports three varibales: average traffic speed,

traffic volume, and occupancy. We use the data from March 2016

and sample 0.3% observations to construct the tensor. Each tensor

index is a tuple of (sensor_id, day, hour, minute, variable_id). We

sample the Traffic Sparse (TRs) by using only 0.07% observations.

SG [23] checkins is collected by Foursquare in Singapore and

Gowalla [29] checkins is collected by Gowalla all over the world.

For SG, we split the geographical region into 1600 grids and convert

the raw locations (latitude, longitude) to grid indices. For Gowalla,

since the location range is much larger, we use DBSCAN [9] to

cluster the locations and use the cluster id of each location as its

location id. Due to the large value range, we normalize the tensor

values by first clipping tensor entries with a maximum of 10 and

then dividing them by 10. Each tensor index is a tuple of (user_id,

location_id, poi_id).

A.3 Metrics
We use the standard MAE (Mean absolute error) and RMSE (Rooted

mean squared error) metrics. For MAPE (Mean absolute percentage

error), we add a threshold δ to avoid too small values on the denom-

inator MAE(y, ŷ) = 100%×(1/n)×
∑n
i=1

|yi − ŷi |/max(|yi | ,δ). We

use δ = 0.1 through the whole paper.

For the recommendation task, given a user u, we recommend k
POIs (remove those only encountered in the training set) named

recou . Denote the set realu to be the set of all POIs visited by

the user u, then Precision@k = |realu ∩ recou |/K , Recall@k =
|realu ∩ recou |/|recou |. Precision@k and Recall@k are averaged

among all users. A better model will have higher scores.

B PROOF OF THEOREM 4.1
Our proof of Theorem 4.1 is based on recent advances of theories of

shallow neural networks [7, 13]. If we only use one convolutional

layer, we can get informative theoretical analysis about CoSTCo. We

will first show that the shallow version of CoSTCo falls into a nice

category of one-layer neural network then provide a useful theorem

characterizing the properties of that neural network category.

Definition of the shallow CoSTCo. Assume CoSTCo has one convo-
lutional layer which hasC output channels and filters of size (w,h).
Assume the activation function σ (x) = x2

and the aggregation

module outputs the sum of its inputs.

One observation is that a mapping module with one convolu-

tional layer can be represented as one single fully-connected layer.

Theorem B.1. Consider a modified CoSTCo on order-N tensor T
of shape (d1, . . . ,dN). Assume there are C convolutional kernels, the
size of the kernel is (w,h), the stride is 1 and no padding is added.
Denote θ as the parameter of the convolutional layer, a tensor of
size 1,C,w,h. The number of convolutional layer’s outputs is no =
C × (N −w + 1) × (r − h + 1). Let us further assume we have a fully-
connected layer who has Nr input nodes, no hidden nodes, 1 output
nodes and the same activation function as CoSTCo. Then there exists a
mapping function h : RC×w×h → Rno×N×r , such that the mapping
module is equivalent to a fully-connected layer whose input-to-hidden
weight matrix is h(W) and hidden-to-output weight matrix is all one
matrix of shape 1 × no .

Proof. Denote the input tensor of the convolutional layer as

X ∈ R1×Nr
. We use the x ∈ RNr

to represent the flattened vector

of X. A 1-stride, zero-padding, size w,h convolution kernel will

haveC × (N −w + 1) × (r −h + 1) outputs. SupposeW∈ RC×w×h

is the convolution filter’s parameter. The (k, i, j)-th output of the

convolutional layer is given by

∑w
a=1

∑h
b=1

Wk,a,bX1,i+a, j+b . For

(k, i, j)-th output, We can find a vector wki j ∈ 1 × N × r , such
that ∀m ∈ {1, . . . ,N − w}, n ∈ {1, . . . , r − h}, a ∈ {1, . . . ,w},

b ∈ {1, . . . ,h},

wki j
1,(m+a)∗r+(n+b) =

{
Wk,a,b , i f m = i and n = j

0, otherwise.

Then the (k, i, j)-th output of the convolutional layer equals to

wki jx. We can then construct a matrix W′

W′ =


wk=1,i=1, j=1

...

wk=C,i=(N−w+1), j=(r−h+1)


and use it as the fully-connected layer’s weight matrix. Define h in

the way thath(W) =W′
. By doing so, we get the mapping function

such that the mapping module is equivalent to a fully-connected

layer. □

Since there is no nonlinear activation function between the em-

bedding module and the nonlinear mapping module, we can merge

them and squeeze CoSTCo into a shallow neural network.

We state this formally in Theorem B.2.

Lemma B.2. Assume the convolutional filters of CoSTCo is fixed
and it has C filters, each of size w × h. Denote no as the number of
output of the convolutional layer, no = C × (N −w + 1) × (r −h + 1).
Then there exists a mapping function h : RC×w×h → Rno×Nr , such
that CoSTCo’s neural network function f can be written as

f (x; {ΘW ,ΘM }) = д

(no∑
t=1

(
Wt, :x

)
2

)
,

where W = h (ΘW)ΘM ,W ∈ Rno×(d1+d2+d3). The right-hand side
is equivalent to a one-hidden-layer neural network with quadratic
activation in hidden layer and д in output layer.

Theorem B.3. Consider the modified CoSTCo and the mapping
functionh as defined in B.2. Let the aggregationmodule output the sum
of all its inputs. Denote f (x ; U1, . . . ,UN ,W) be the function of the
modified CoSTCo whereW is the parameter of the first convolutional
layer. The modified CoSTCo is equivalent to a one-hidden-layer neural
network with hidden parameter Ŵ ∈ Rno×Nr such that

f (x; U1, . . . ,UN ,W) =

no∑
i=1

©­«
Nr∑
j=1

Ŵi jxj
ª®¬

2

Proof. Given an input vector x, the output of embedding layer

is Mx as defined in Equation 4. Theorem B.1 states that the convo-

lutional layer equals to a fully-connected layer of parameter h(W).

As its activation function is quadratic function and its aggregation

module outputs the sum of all its inputs, the output of the modified

CoSTCo given an input x, will

f (x; U1, . . . ,UN ,W) = Agg

(
σ
(
h(W)Mx

))
=

no∑
i=1

©­«
d∑
j=1

Ŵi jxj
ª®¬

2

where Ŵ = h(W)M. Thus, the modified CoSTCo is equivalent to a

one-hidden-layer neural network. □

We cite a useful theorem in [7] that characterizes the nice prop-

erties of a specific kind of one-layer neural networks with quadratic

activations.

Lemma B.4 (Theorem 3.2 and Theorem 4.3 in [7]). Suppose the
training set S contains the input data x ∈ Rd and target y ∈ R. Con-
sider a one-hidden-layer neural network represented by f (x; W) =∑m
i=1

(∑d
j=1

Wi jxj
)

2

where W ∈ Rm×d is the weight from input
layer to the hidden layer. Assume that m ∗ (m − 1) ≥ 2|S |. Let
ℓ(ŷ,y) = (ŷ − y)2 and the objective function is

L(W) =
1

2|S |

∑
(x,y)∈S

ℓ (f (x; W) ,y) +
λ

2

∥W∥2

F + ⟨C,WT W⟩, (9)

where ⟨·, ·⟩ denotes dot-product and C is some random positive semi-
definite matrix with ∥C∥2

F ≤ δ . The objective function 9 has the
following three properties:

(1) All local minima of L(W) are global minima.
(2) All saddles point of L(W) are strict saddle points.
(3) For any local optimum W′ of L(W), for all W ∈ Rm×d , we

have
1

2|S |

∑
(x,y)∈S

ℓ
(
f

(
x; W′

)
,y

)
+
λ

2

∥W′∥2

F ≤

1

2|S |

∑
(x,y)∈S

ℓ (f (x; W) ,y) +
λ

2

∥W∥2

F + δ ∥W∥2

F .

In addition, for some constants c1, c2, c3 ∈ R, assume that (x,y) ∈ S is
drawn i.i.d. from some probabilistic distribution P such that x is inside
a bounded ball: ∥x∥2

2
≤ c1,

xxT

2

2
≤ ∞. For all W ∈ Rm×d that

satisfies ∥W∥2

F ≤ c2, the gap between training error (empirical test
error) 1

|S |
∑
(x,y)∈S ℓ(f (x; W),y) and generalization error (expected

test error) E(x,y)∼P [ℓ(f (x; W),y)] is bounded by

E(x,y)∼P [ℓ(f (x; W),y)] −
1

|S |

∑
(x,y)∈S

ℓ(f (x; W),y) ≤ c2

1
c2

2
c3

√
logd

|S |
,

Finally, we give the proof of Theorem 4.1.

Proof. Theorem B.3 shows that the modified CoSTCo can be

written as f (x) =
∑no
i=1

(∑d
j=1

Ŵi jxj
)

2

, which is exactly the same

function format as in Lemma B.4. Moreover, x is an indexing vector

and by definition 1 we have ∥x∥2

2
= N ,

xxT

2

2
= N ,∀x ∈ S .

Assumew = N /2+ 1,h = 1, then no = CNr/2. As we assumed that

|S | = O(
∑N
i=1

di), if C = O(
√

maxi di/(Nr2)), then no × (no − 1) ≥

O(|S |). To sum it up, if we train the modified CoSTCo with objective

function 9 and C is some random positive semi-definite matrix with

∥C∥2

F ≤ δ . Then L(Ŵ) satisfies all three properties in Lemma B.4.

Besides, if for some constants c2, c3 ∈ R and

Ŵ

2

F ≤ c2, the

generalization error is bounded by

E(x,y)∼P [ℓ(f (x; W),y)] −
1

|S |

∑
(x,y)∈S

ℓ(f (x; W),y) ≤ c2

2
c3

√
log

∑N
i=1

di

|S |
.

□

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Notations
	3.2 Tensor Factorization
	3.3 Nonlinear Tensor Factorization Formulation

	4 Methodology
	4.1 The CoSTCo Model
	4.2 Optimization and Generalization of CoSTCo
	4.3 Parameter Efficiency of CoSTCo

	5 Experiments
	5.1 Overfitting Experiment
	5.2 Sparse Tensor Completion
	5.3 Downstream Tasks
	5.4 Visualization of Learned Factors
	5.5 Running Time Comparison

	6 Conclusion
	7 Acknowledgments
	References
	A Experimental Detail
	A.1 Implementation and Hyper-parameters
	A.2 Datasets
	A.3 Metrics

	B Proof of Theorem 4.1

