
Effective Map-matching on the Most Simplified Road
Network

Kuien Liu † Yaguang Li †§ Fengcheng He †§ Jiajie Xu † Zhiming Ding †

† Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
§ University of Chinese Academy of Sciences, Beijing 100049, China
{kuien,yaguang,fengcheng,jiajie,zhiming}@nfs.iscas.ac.cn

ABSTRACT
The effectiveness of map-matching algorithms highly de-
pends on the accuracy and correctness of underlying road
networks.In practice, the storage capacity of certain hard-
ware, e.g. mobile devices and embedded systems, is some-
times insufficient to maintain a fat digital map for map-
matching. Unfortunately, most existing map-matching ap-
proaches consider little about this problem. They only ap-
ply to environments with information-rich maps, but turns
out to be unacceptable for map-matching on simplified road
maps. In this paper, we propose a novel map-matching al-
gorithm called Passby to work on most simplified road net-
works. The storage size of digital road map in disk or mem-
ory can be greatly reduced after the simplification. Even
under the most simplified situation, i.e., each road segment
only consists of a couple of junction points and omits any
other information of it, the experimental results on real
dataset show that our Passby algorithm significantly main-
tain high matching accuracy. Benefiting from the small size
of map, simple index structure and heuristic filter strategy,
Passby improves matching accuracy as well as efficiency.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Spatial databases and
GIS

General Terms
Algorithms, Performance

Keywords
GPS, Map-matching, Simplified Road Network

1. INTRODUCTION
Map matching aims at relating a sequence of (possibly

imprecise) location measurements to a spatial road network
and identifying the correct road segment on which the vehi-
cle is travelling. It is a fundamental pre-processing step for

many applications, such as moving object management [4],
vehicle navigation [8], traffic conditions monitoring [5] and
geographical social network.

The effectiveness of map-matching algorithms highly de-
pends on the accuracy and correctness of underlying road
networks. There are a number of studies on map-matching
[2, 3, 7, 6]. Most of them assume that the digital road
network data used for map-matching should be of a large
scale and well featured in order to generate matching out-
puts with fewer errors. In practice there exists many cases
that lack of storage capacity to maintain a fat digital map
for map-matching, e.g., mobile devices or embedded sys-
tems. A practical solution for such cases is to simplify the
road network to reduce its storage size. However, effective
map-matching on the simplified road network is challenging
because of the incompleteness of topology information.

Unfortunately, most existing map-matching approaches is
not applicable to simplified maps, and produce unaccept-
able matching accuracy. After simplification, many features
become no longer available for map-matching. For exam-
ple, large curves and roundabouts might be represented by
a relatively short line segment (or two sequential points).
With simplified road network, many commonly used criteri-
ons for map-matching may not be useful any more. Figure 1
illustrates an example of matching error on simplified road
network, in which roads e1 and e2 are simplified as directed
lines. Given a vehicle moving along road e1, and reported
the current GPS position pi, take the geometric measures
of both deviation distance (d2 ≪ d2) and orientation simi-
larity (θ2 ≪ θ1) into account, it is easy to match pi to the
incorrect road e2 rather than the true road e1.

pi

d2

pi-1

e2

e1

practical road

simplified road

pi+1

d1

Figure 1: An example of simplified road network.

In addition, as the dependency between current or neigh-
boring positions and nearby roads decreases, less informa-
tion can be used to deduce the precise road network loca-

tions of the object. The problem is aggravated when the
GPS data is sampled in low frequency, or there are many
road links around these points.

1.1 Most Simplified Road Network
In this paper we refer to simplified road networks as sim-

ple graph with no more attributes, i.e., a graph consists only
intersection coordinates and topological relation. In a clas-
sic road network, each road segment includes three parts
of features: 1) start/end junctions, 2) a route (usually be
expressed by a polyline) from start junction to end junc-
tion, and 3) design parameters, such as speed limitation,
turn restrictions at junctions, roadway classification (such
as one-way, two-way), width of the carriageway, number of
lanes, and overpass and underpass information etc. Under
the most simplified situation, each road segment only con-
sists of a couple of junction points (part 1) and omits any
other information of it (parts 2, 3). Table 1 illustrate the
difference of edge representation between original road map
and the most simplified road map.

Table 1: Original road edge vs. most simplified one
Type Attributes

Original id, name, type, length, speed limit
width, start, p1, p2, ..., pn, end, etc.

Simplified id, start, end

In this paper, we focus on the most simplified road net-
work. Below lists necessary principles for problem state-
ment.

Definition 1. A trajectory T is a sequence of GPS points
{p1, p2, ..., pn}, where each GPS point pi consists of a triple
< t, x, y > and pi−1.t < pi.t.

Definition 2. A most simplified road intersection v
is a geometrical point that is associated with only an id v.id,
a geometrical position v.lat and v.lng.

Definition 3. A most simplified road segment e is a
directed edge that is associated with only an id e.id, a start-
ing point e.start and an ending point e.end.

Definition 4. A most simplified road network G is a
directed graph G(V,E), where V is a set of vertices rep-
resenting the intersections and terminal points of the road
segments, and E is a set of edges representing the most sim-
plified road segments.

Now the problem of map-matching is defined as:
Given a trajectory T and a most simplified road network
G(V,E), find the edge e from G that matches p(p ∈ T).

In this paper, we propose a novel map-matching algorithm
called Passby for simplified road networks. Our main con-
tributions are listed as below:

• We study the problem of map-matching on the most
simplified road network. To the best of our knowledge,
this paper is the first work in this field.

• We propose the Passby algorithm to deal with map
simplification. Its basic idea is to efficiently determine
whether the trajectory passes by a simplified road seg-
ment no matter what practical road looks like.

• We perform experiments on real dataset, which verifies
the feasibility and effectiveness of Passby algorithm .

2. PROPOSED METHOD: PASSBY
The major difference of map-matching on simplified road

networks and on original ones is how we measure the sim-
ilarity between trajectory and road segments. Traditional
measures in current existing approaches do not apply for
the context of simplification maps. For example, the dis-
tance proximity and orientation similarity, δ and θ in Figure
1, seem to be rather misleading and unhelpful for road edge
determination, because road edges (e.g., e1) in simplified
map may be quite different from those in practice. We need
effective methods to decrease the uncertainty in simplified
map.

An interesting observation is that a vehicle’s motion is
much more certain when it passes by a road junction. In
other words, whether a vehicle’s position can be matched to
a road edge may be partly deduced by finding out whether
this vehicle passed by (one or both) intersections of this
road. Following this idea, this paper proposes the Passby
algorithm aiming at the most simplified road network.

Algorithm 1 The Passby Algorithm

1: input: a trajectory and a simplified road network
2: repeat
3: if pi−1 and pi pass junction e.start then
4: if pj and pj+1 pass junction e.end then
5: match points {pi, . . . , pj} to edge e;
6: next loop starts from pj+1;
7: else
8: get candidate edges traversing from pi−1 to pi;
9: match pi to e in weighted ranking way;
10: next loop starts from pi+1;
11: end if
12: end if
13: match remaining points with existing algorithm;
14: until ALL points are processed

As Algorithm 1 shows, Passby carries out the map-matching
process with three cases. The first case is that the trajectory
passes by both junctions of a road, then mid-points between
two junctions can be matched to the same road without in-
dividual check. It is really useful for GPS in high sampling
rate (≥ 0.1Hz). The second case is that the trajectory only
passes by the starting junction of a road, then we gener-
ate the candidate edges that next point may move on. It is
more common for low sampling trajectories. The last case
is the remaining points (including cold-start points), whose
passing-by semantics are not that intuitive, we employ cur-
rent existing methods to match them, e.g., the incremental
algorithms.

The index structures used in Passby are simple but ef-
fective. We only need to build one index on road junctions
(rather than on road edge in traditional approaches) and the
other one on trajectory with point index, e.g., the grid which
is also well suited for parallel processing further. Next, we
will briefly introduce the major components of Passby: 1⃝
how to determine the passing-by (in line 3 and line 4) and
2⃝ how to choose the candidates (line 8).

2.1 How to measure a vehicle passing by a road
junction

Given two successive GPS points pi−1, pi and a candidate
edge e, the question of whether pi−1, pi passing by e.start
(line 3 in Algorithm 1) can be evaluated by weighted formula
with following four measures:

• dp: the projection distance from point pi to edge e;

• θi: the intersection angle between line −−−−→pi−1, pi and e;

• dt: the traversing distance projected from junction
e.start to line −−−−→pi−1, pi;

• θt: the traversing angle between line
−−−−−−→
e.start, pi and

−−−−→pi−1, pi.

As the road edge e may be simplified a lot, we do not know
its actual length with any certainty. Furthermore, tempo-
ral/speed constraints of the trajectories are hard to enforce
in the map-matching process. Figure 2 illustrates an exam-
ple of these four measures. For simplified roads, smaller
traversing distance and angle give better proximity. Fi-
nally, the combined passing-by score may be computed as
the weighted sum of individual measures.

pi

pi-1

e.start

e
dt

e.end

θt

θi

dp

Figure 2: Four measures used in Passby.

2.2 How to choose the road candidates a vehi-
cle move next

Existing geometric methods (in Euclidean space), e.g., the
error ellipse [2], are not always suitable for map-matching in
simplified road network, during to two reasons: 1) the map
simplification would cause loss-of-answer at times; 2) the
error may be accumulated from previous steps, e.g., the Y-
junction problem [7]. With these considerations, we employ
a topological and Euclidean hybrid method to choose the
road candidates for matching next point (pi in Figure 3).
The traversing range between last matched point and cur-

rent point is constrained by two factors. One is the max-
imum moving range (r in Figure 3) around current point.
The other is the maximum accumulative length of travers-
ing path (e.g., r+ |e1|) starting from last matched point. We
call the former as Euclidean range and the latter topological
range. Figure 3 gives us an example on this. The region
intersected by both ranges significantly restricts the number
of candidate edges (in bold black).
The topological range is stepwise generated. As the ex-

ample in Figure 3 shows, we first look backward, and locate
the upstream junctions where the vehicle comes from (e.g.,
e1.start for pi−1). The step helps to partly solve the Y-
junction problem [7]. Then, from these upstream junctions,
we look forward along the road network topology till out of
the reasonable traversing range, and keep all the interme-
diate edges into candidate set. Once the candidate region
is constructed, we can rank them using weighted measures
listed in section 2.1 and finally get the matching result.

pi

pi-1

r= t*Vmax

ei-1

topological range Euclidean range

Figure 3: Candidate region construction in Passby.

2.3 Some supplementary mechanisms
This section gives out several supplementary mechanisms

to fasten the map-matching process while guaranteeing its
correctness.

2.3.1 Fast Angle Calculation
Angle calculation is the foundational function for all of

the measures in section 2.1, e.g., the traversing distance can

be calculated by dt = sin θt × |−−−−−−→e.start, pi|. To speed up the
calculation, we import arctan lookup table and sin lookup
table which are organized in hash containers. With this
design, it is quite easy to get the angle for a given vector.
Then we can get the intersection angle of two vectors by
subtraction.

2.3.2 Parallelized Matching Process
To make best use of the advanced multi-core technologies

in modern computers, Passby algorithm is designed follow-
ing the idea of parallelism. First, the digital map data is
loaded concurrently, each thread takes charge of an (near)
equivalent part of map data. To avoid extensive collision
in exclusive operations and time cost in mutual locks, we
create a global memory pool and share it with every thread.
Furthermore, we delay the maintenance of topological re-
lationship (e.g., indegree/outdegree of each junction) from
loading step to matching step, and perform these operations
on need. In the same way, we implement the index building
and map-matching process.

2.3.3 Outlier Identification
The approach of candidate graph construction in section 2.2

is a little sensitive to outliers and depends on correctness of
pre-matching result which may be incorrect. For example,
a vehicle is at a standstill for a short time, two sequentially
matched road edges are not reachable under reasonable con-
straints, cold-start points may not be unique (e.g., passing
through the tunnel is treat as a new trip). By identifying
the outlier, we can further improve the accuracy of Passby.

3. EXPERIMENTAL RESULTS
In this section we first present the experimental settings,

then we report the overall effectiveness of Passby algorithm
on simplified road network in terms of map size and running
time, and finally we study the matching accuracy of Passby

on trajectories in different sampling rates.
In our experiments, we use the road network and data

sets provided by ACM SIGSPATIAL Cup 2012 [1], which is a
GIS-focused algorithm competition hosted by ACM SIGSPA-
TIAL. The network graph contains 535,452 vertices and
1,283,540 road segments. The data set used in our exper-
iments contains 20 files: 10 trajectory files (14,436 GPS
points in total) are used for testing and each file contains
a GPS trace route of an individual trip, while the other 10
files are used as the ground truth in results verification. Our
implementation is written in C++ on Visual Studio express
platform, experimental results were taken on a computer
with Intel Core2 Dual CPU T8100 2.1 GHz and 3 GB RAM.
To evaluate our experimental results, we compare Passby

with incremental algorithm, which has been widely used as
its low time-complexity [6]. The incremental algorithm tries
to find local match of geometries, and performs matching
based on a point’s previous matching result. Comparing
with other approaches, such as global methods or statistical
methods, local/incremental algorithm achieves better per-
formance with a little lower matching accuracy. It is similar
to our motive and objective in Passby.

 0

 50

 100

 150

 200

 250

 300

orig.
map

simp.
map

m
ap

 s
iz

e(
M

B
)

 0

 5

 10

 15

 20

 25

 30

original
map

original
map(parallel)

simplified
map

simplified
map(parallel)

el
ap

se
d

tim
e(

s)

loading
Indexing
Matching

Figure 4: Effectiveness of Passby on simplified map.

As shown in Figure 4, the map size after simplification re-
duces to 17.7% as the original one, while the overall elapsed
time reduces to 15.8%(14.1%) for sequential(parallel) mode.
It demonstrates the effectiveness of our work on simplified
road network, i.e., the requirement of memory capacity for
map-matching is reduced as well as computing power.

 70

 75

 80

 85

 90

 95

 100

 0 5 10 15 20 25 30

ac
cu

ra
cy

(%
)

sampling interval(s)

Incremental(Original)
Passby(Simplified)

Incremental(Simplified)

Figure 5: Accuracy w.r.t different sampling rates.

Figure 5 demonstrates the change of matching accuracy

w.r.t to different sampling rates extracted from real data. It
can be seen clearly that our Passby algorithm outperforms
the incremental algorithm on simplified road network, for
example, the matching accuracy of Passby algorithm is up
to 8% better than the incremental algorithm for the frequent
sampling cases (rate over 0.1Hz). We also notice that, as the
sampling rate decreases, the accuracy of Passby drops in the
same trend as incremental algorithm, leading to near consis-
tent 4%. This implies that traversing measures become less
effective when neighboring GPS points are far away from
each other.

4. CONCLUSIONS
In this paper, we propose a new offline map-matching al-

gorithm called Passby to match GPS data onto a simpli-
fied digital map. The experiment results demonstrate that
our Passby algorithm achieves exciting effects compared to
the incremental algorithm. Meanwhile, benefiting from the
small size of map, simple index structures and heuristic fil-
ter strategy, Passby improves matching accuracy as well as
efficiency.

5. ACKNOWLEDGMENTS
We wish to thank the SIGSPATIAL CUP organizers for

their efforts and help during the match. This work was
supported by the National Natural Science Foundation of
China (Nos.91124001, 60970030, 61003028 and 61202064)
and the Strategic Priority Research Program of the Chinese
Academy of Sciences (No. XDA06020600).

6. REFERENCES
[1] Acm sigspatial cup 2012 training data sets, Feb. 2012.

Available from http://depts.washington.edu/giscup.

[2] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In VLDB, pages
853–864, Trondheim, Norway, 2005.

[3] Z. Ding and K. Deng. Collecting and managing
network-matched trajectories of moving objects in
databases. In DEXA (1), pages 270–279, 2011.

[4] Z. Ding and R. H. Güting. Uncertainty management for
network constrained moving objects. In DEXA, pages
411–421, Zaragoza, Spain, 2004.

[5] K. Liu, K. Deng, Z. Ding, M. Li, and X. Zhou.
Moir/mt: Monitoring large-scale road network traffic in
real-time. PVLDB, 2(2):1538–1541, 2009.

[6] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate gps
trajectories. In ACM SIGSPATIAL GIS, pages
352–361, Seattle, Washington, 2009.

[7] M. A. Quddus, W. Y. Ochieng, and R. B. Noland.
Current map-matching algorithms for transport
applications: State-of-the art and future research
directions. Transportation Research Part C: Emerging
Technologies, 15(5):312–328, 2007.

[8] J. Xu, L. Guo, Z. Ding, X. Sun, and C. Liu. Traffic
aware route planning in dynamic road networks. In
DASFAA (1), pages 576–591, 2012.

