Compressing Large Scale Urban Trajectory Data

Kuien Liu', Yaguang Li', Jian Dai', Shuo Shang? and Kai Zheng?

! Institute of Software, The Chinese Academy of Sciences,Beijing 100190, China
2 China University of Petroleum, Beijing 102249, China
3 The University of Queensland, Brisbane QLD 4072, Australia

{kuien,yaguang,daijian} @nfs.iscas.ac.cn,jedi.shang@gmail.com, kevinz@itee.uq.edu.au

Abstract

With the increasing size of trajectory data generated by location-
based services and applications which are built from inexpensive
GPS-enabled devices in urban environments, the need for com-
pressing large scale trajectories becomes obvious. This paper pro-
poses a scalable urban trajectory compression scheme (SUTC) that
can compress a set of trajectories collectively by exploiting com-
mon movement behaviors among the urban moving objects such as
vehicles and smartphone users. SUTC exploits that urban objects
moving in similar behaviors naturally, especially large-scale of hu-
man and vehicle which are moving constrained by some geograph-
ic context (e.g., road networks or routes). To exploit redundancy
across a large set of trajectories, SUTC first transforms trajectory
sequences from Euclidean space to network-constrained space and
represents each trajectory with a sequence of symbolic positions in
textual domain. Then, SUTC performs compression by encoding
the symbolic sequences with general-purpose compression meth-
ods. The key challenge in this process is how to transform the tra-
jectory data from spatio-temporal domain to textual domain with-
out introducing unbounded error. We develop two strategies (i.e.,
velocity-based symbolization, and beacon-based symbolization) to
enrich the symbol sequences and achieves high compression ratios
by sacrificing a little bit the decoding accuracy. Besides, we al-
so optimize the organization of trajectory data in order to adapt it
to practical compression algorithms, and increase the efficiency of
compressing processes. Our experiments on real large-scale trajec-
tory datasets demonstrate the superiority and feasibility of the our
proposed algorithms.

Categories and Subject Descriptors H.2.8 [Database Applica-
tions]: Spatial databases and GIS

General Terms Algorithms, Design

Keywords Data Compression, Spatio-temporal Trajectory Data

1. Introduction

In recent years, the volume of spatio-temporal trajectory data gen-
erated from urban environments has drastically increased due to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CloudDP’14, April 13, 2014, Amsterdam, Netherlands.

Copyright © 2014 ACM 978-1-4503-2714-5/14/04. .. $15.00.
http://dx.doi.org/10.1145/2592784.2592787

the prevalence of inexpensive GPS-enabled devices (cellphones or
in-vehicle navigation terminals) and explosive growth of location-
based services (LBS) and applications [23]. According to the latest
statistics from GSA’s reports [1], 775,000 Apple Apps and 700,000
Android Apps have been developed up to Oct. 2013, with an esti-
mated 40% of them collecting user location information. As a re-
sult, more and more smartphone users are appreciating or relying
on the capabilities of LBS in their daily lives.

The enormous volumes of trajectory data can easily overwhelm
existing LBS and navigation applications, bring new challenges
in storing, transmitting and processing this data, which urges the
need for general-purpose, scalable data compression technique for
trajectories.

Several trajectory compression methods have been proposed in
recent years [7, 8]. Almost all of them can be classified into the cat-
egory of lossy-compression [17], with the idea that replaces sever-
al consecutive trajectory segments by a time-parameterized motion
function (e.g., a linear model [(t) = lo+vo X (¢t —to)) while main-
taining an acceptable degree of deviation caused by simplification.
For example several work use the Douglas-Peucker [5] linear sim-
plification technique while others take the parameter of time into
account [16] or preserve speed and heading information [18].

Unfortunately, few of them are applicable to large scale trajec-
tory compression. That is because these works focus on compress-
ing each single trajectory independently, and they can be essential-
ly treated as solutions to the min-¢ problem [3]. The redundancy
exists not only in a single trace itself but also across a trajectory
collection.

In practice, urban moving objects share substantial common
travel behavior since their movements are usually constrained by
some geographic context (e.g., road networks or routes) [4, 11,
19]. For example, employees may commute between home and
office driving the same routes hundreds of times, and trajectories
collected form citywide gradually form a series of popular routes
between uptown and downtown.

The phenomenon that redundancy exists among multiple trajec-
tories and trajectory segments in urban environments makes it pos-
sible for us to reduce the size of trajectory data further. Two lines
of research are closely related to the concept of redundancy among
a set of trajectories, i.e., trajectory similarity search [13] and trajec-
tory pattern mining [14]. However, they have different focus and
the proposed algorithms are usually time consuming which makes
them hard to be applied in trajectory compression directly.

We propose a scalable compression technique dealing with large
scale trajectories in a collective manner. To guarantee its usabili-
ty in practical applications, there are several challenges to be ad-
dressed: 1) the compression process should be fast, 2) the com-
pression error should be adjustable, and 3) the compress algo-
rithm should be adaptive to resource-limited settings. We develop
a method (SUTC) that addresses these challenges by transform-

ing spatio-temporal trajectories into text sequences using different
symbolization strategies, and allow most applications to adjust the
restoration error within tolerant range. We also improve the tra-
jectory data organization for compression to adapt to computing
environments.

In general, the major advantages of our solution are that we are
committed to capture the similarity among multiple trajectories in a
highly efficient way, i.e., time complexity is O(n), and reduce the
redundancy information using most common compression meth-
ods, which have usually been integrated into operating systems and
databases as a fundamental component. Benefiting from these at-
tributes, SUTC works well in practical environments.

The main contributions of this paper can be summarized as
follows:

e Taking into consideration the redundancy commonly existing
among large-scale urban trajectories, we propose a working
solution called scalable urban trajectory compression (SUTC).

Proposing two symbolization strategies with help of underlay-
ing road networks, we first transform spatio-temporal trajecto-
ries into textual sequences and then compress large sets of tra-
jectories using general-purpose compression techniques.

Reorganizing the trajectory data according to several practical
factors other than maximum compression error, we can perfor-
m SUTC algorithms in various computing environments, e.g.,
with limited memory capacity.

Performing an experimental study conducted over real trajecto-
ry datasets, we demonstrate the effectiveness and the efficiency
of the proposed solution.

The remainder of this paper is organized as follows. In Section
2 we briefly introduce the related works. Section 3 presents the
overview of our solution as well as two symbolization strategies,
followed by improvement efforts toward practical environment set-
ting in Section 3.4. Experimental results are discussed in Section 4.
Finally, Section 5 concludes the paper.

2. Related Work

There is a vast body of literature on trajectory compression in re-
cent years. Good surveys on trajectory compression are provided
in [7, 8, 17]. Line simplification, the idea of which is borrowed
from computer graphics and cartography, is well studied in area of
trajectory compression. Most of the line simplification algorithm-
s operate in the two dimensional Euclidean space. For example, in
paper [16] proposes a compression technique that uses the Douglas-
Peucker method (DP) [5] and takes the parameter of time into ac-
count. In particular, it replaces the Euclidean distance used in the
DP method by a time-aware one, called Synchronous Euclidean
Distance (SED). Besides, the STTrace algorithm [18] is designed
to preserve heading and speed information together with spatial
distance. This kind of techniques is easy to understand and im-
plement and can be roughly considered as solutions to the min-&
problem [3], i.e., for a given number of vertices, find the simplified
polygon chain with the lowest distance to the original polygonal.

Single trajectory compression can also be interpreted as finding
out a motion function to approximate the original trajectory with
acceptable deviation. The motion function can be described with
linear or non-linear models. Line simplification algorithms [16, 18]
is a linear model, which assumes an object moving with constant
speed till the offset between actual positions and estimated position
exceeds a deviation threshold. Besides, non-linear methods such
as Chebychev polynomials [2], cubic spline [10] and acceleration
profile are imported to approximate a trajectory. Inevitably, they
always suffer from higher computational complexity than that of
linear ones.

—
Eg, 1zMAIn TP E
7Zip,gzip,bzi =
p2, or RAR. | =4
(c)

Figure 1. Processes of SUTC: (a) matching a set of trajectories
onto the road network, (b) representing them using symboliza-
tion strategies, and (c) compressing symbolized trajectories using
general-purpose methods.

An off-line compression method related to our work is the
one by Cao and Wolfson [21]. However, our goal is to reduce
the storage size of large-scale trajectory data without altering its
infrastructure, but only by preprocessing and invoking common
compression methods. Also related to ours are the work based
on the priori knowledge of the road network, e.g., MMTC [9]
explore the combination of the map-matching with the storage-
space problem, STC [20] achieves its compression rate by replacing
raw position information with a semantic representation of the
trajectory consisting of a sequence of events, and work [6] proposes
a solution that dilutes (or simplifies) the trajectories to routes by
Map-matching and DP [5] and then codes routes over a vectorial
road network. But all these works focus on encoding a single
trajectory rather than all at once.

There are two kinds of research close to the concept of re-
dundancy among a set of trajectories, i.e., trajectory similarity
search [13] and trajectory pattern mining [14]. These works have
certain value of reference to redundancy detection. However, their
objective is to analyze the similar behavior of moving objects and
always cause huge computational cost, whereas this paper is to ex-
tract a higher level of redundancy among large-scale trajectories.

Another related research topic is data compression in the
database (e.g., light-weight database compression [22]), but it is
designed to compress data of generic types using lossless scheme
and, consequently, are not directly applicable here. Our approach
is a lossy compression scheme which aims to utilize the re-
duced/compressed trajectories to get both higher storage capacity
and faster response.

In general, the key difference between most of existing works
and our work is that we focus on how to compress a large set of
urban trajectories by general-purpose compression techniques.

3. Scalable Urban Trajectory Compression
3.1 Overview of SUTC Algorithm

Due to the constrained transportation infrastructures, such as un-
derlying road network, urban trajectories often repeat themselves.
Intuitively, although the number of urban trajectories can be huge,
most of the movement routes on the road network in a city are rela-
tively fixed. Hence, we can use the map-matched road segments to
symbolize the original trajectories, and then perform compression
on resulted strings.

Our approach consists of three steps as shown in Figure 1. First,
we use a highly scalable map matching algorithm to associate the
original trajectories with the road network [12, 15]; then, several
novel symbolization strategies are adopted to convert the matched
trajectories to plain strings; finally, conventional compression algo-

rithms and tools (such as the Lempel-Ziv-Markov chain algorithm
(LZMA) in 7zip) can be directly applied to these plain strings.

The reasons why the symbolization strategies play an important
role in trajectories compression are as follows.

e The positioning information in the original trajectories is rep-
resented in floating-point numbers. Hence, the detection of
spatio-temporal duplicates is not that straightforward, which
will result in the poor performance of conventional compres-
sion algorithms.

Compared with the Chebyshev polynomials fitting and the s-
pline interpolation, the symbolization technique is more effi-
cient and scalable to deal with large scale urban trajectories.

The symbolization technique is robust and easy to be combined
with other compression algorithms and tools. Therefore, even
if, in some cases, the trajectories have not been compressed
sufficiently in step two, further compression can be made in the
final step.

e We can customize the symbolization process to generate short
and unified symbols.

Since the major component of SUTC is to convert the raw tra-
jectories to symbolized sequences, we will elaborate two trajectory
symbolization strategies in section 3.2 and section 3.3, respectively.

3.2 Velocity based Trajectory Symbolization(SUTC,)

In urban environments, the traffic conditions on certain road seg-
ments are usually stable within a certain period. Accordingly, the
travelling velocities on them are relatively fixed. Inspired by this
observation, we propose a velocity based trajectory symbolization
strategy (SUTC,).

reference point

&)

rp; (t;,rid;, pos;)
i Aty ridy., vy)

Figure 2. Velocity based Trajectory Symbolization (when the dis-
tance deviation is greater than the predefined J, a new reference
point will be generated).

Algorithm 1 shows the pseudo-code of this process. As a pre-
liminary step, the algorithm performs the map-matching to con-
vert the trajectory ((¢;, 2, y:)j—1) to a map-matched sequence
(rpi)i=1 = (ti,rid;, pos;) (Line 2), where rid; denotes the id of
map matched road segment, pos; denotes the distance between the
point and the starting junction of the road segment. Figure 2 illus-
trates the map-matching process of the SUTC,,. As p1(t1, 1, y1) is
the first sampling point of the trajectory, it automatically becomes
a reference point (Line 1).

Then the matched sequence is converted to ((rp;, (spi;)~)Ey)
(Lines 4 - 20), where rp; = (t;,7id;, pos;) denotes the ith
reference point (matched onto the road network), and sp; ;=
(At ,rid;;,v;;) is the sliding point along the road network, in
which At;; is the sampling interval between two consecutive sam-
plings, rid;; is the matched road segment, and v;; is the average
velocity between two consecutive samplings.

k<j

t= Z Aty (D

k=i+1

v = Round (pi; py) - Av
t-Av

1P+t (tiv1 Fidi1,pOS+1)

Algorithm 1 The Velocity based Trajectory Symbolization

Input:Road network G, trajectory T = (t;,lats,Ing;)i—y, dis-
tance deviation bound §
Output:The compressed result: T,

I: Totr < NULL,% < 2,d < 0,d < 0, SP < NULL

2: RT <+ Mapmatching(T) // RT = (rpi)ie1 =
(ti, ridi, posi)iy

3:rp4—1rp1

4: while i < n do

5: At pit —pi—1.t

6: P+ FindPath(pi,hpi)

7: U <+ Length(P)/At

8: ¥ <+ Round(7/Av) - Av

9 d+d+7v-At

10 d+d+7v-At

11: if|d —d| < 0 then

12: SP.Append((At, rid;, v))
13: else

14: Tstr . Append((rp, SP))
15: SP < NULL, rp < rp;
16: d+0,d+<0

17: endif

18: i<+ i+1

19: end while

20: Tstr.Append((rp, SP))
21: return Ty,

where d(p;, p;) is the shortest distance between p; and p;, At; is
the time interval between ¢; and its previous point.

In Line 6, function FindPath is used to find the shortest path
from p;_1 to p;. In Lines 7 - 8, the algorithm calculates the average
speed and the rounded average speed between the two adjacent
points. As shown in Equation (1), the ¥ is rounded with the velocity
interval Av in order to improve the compression effectiveness.

In Lines 9 - 17, the algorithm calculates the distance deviation
to determine whether a reference point should be created. If the
deviation is smaller than § (Line 11), the calculated sliding point
(At, rid;, v) will be appended to the sliding point sequence SP.
Otherwise, the whole sliding point sequence together with the ref-
erence point will be appended to the result (Line 14), and then a
new reference point will be created (Line 15).

3.3 Beacon based Trajectory Symbolization(SUTC,)

In SUTC,, the first point that results in intolerable deviation, i.e.,
deviation that is greater than 6, is treated as a new reference point.
However, the efficiency of this algorithm tends to be less satisfac-
tory when the number of trajectories grows larger due to the time-
consuming shortest path finding algorithm.

Since the road networks are fixed, we can establish our refer-
ence points off-line and reuse them as beacons rather than com-
puting from the scratch. Motivated by this idea, the beacon based
trajectory symbolization algorithm (SUTCy) is proposed, which is
illustrated in figure 3.

In SUTC,, we define the beacon distance d to split the road
segment into fragments 7 f's. These fragments are labeled by adding
a suffix to the original road segment id, i.e., 7 f;4,. For example, if
we set d = 100m, and the length of the road segment with id 4562
is 281m, then we can split it into three road fragments r fa562,,
r fase2, and 7 f4562,, where the lengths of first two fragments are
100m and the length of the last one is 81m. In general, Equation
(2) is used to get the fragment indices.

beacons

&)
pilti, xi, yi)

Pi(te, X, Vi) © Pi G, %,)

) Y

Figure 3. Beacon based Trajectory Symbolization (each junction
automatically becomes a beacon, then the other beacons are com-
puted in accordance with the Equation (2)).

[htbplide = L%J @)
where rs denotes the distance between the starting junction of the
road segment and the starting point of the fragment, while d is the
beacon distance.

As the map matched sampling point is aligned to its nearest bea-
con, the maximum distance between the beacon and the sampling

point is limited to half of the beacon distance.

Algorithm 2 The Beacon based Trajectory Symbolization
(pi)i=1 =

Input:Road network G, trajectory T =
(ti,lati,Ing;)ij—,, beacon distance d
QOutput:The compressed result: T,
Tstr — NULL,Z < 17t +—0
while : < n do
rfid + GetNearestBeacon(G, p;)
Tser Append((p;.t — t,rfid))
t<pit,i<+i1+1
end while
return T,

A ol e

Another merit of SUTC,, is that it can convert the original tra-
jectories to strings without computing the shortest distance between
two sampling points, which greatly reduces the compression time.

Algorithm 2 gives a brief description of SUTC,. Function
GetNearestBeacon is used to get the nearest beacon to the tra-
jectory point. As beacons are indexed using Grid or R-Tree, this
can be done in O(log(NN)) time complexity, where N is the num-
ber of beacons in the road network.

3.4 Optimization based on data reorganization(S UTC['Z ‘b])

To provide symbolic sequences (or strings) which are more suitable
to be compressed by conventional algorithms, we need to put simi-
lar trajectories together. Because for both SUTC; and SUTC,,, our
approaches tend to symbolize the similar trajectories to the similar
or identical strings. And the lossless data compression algorithms
(such as Lempel-Ziv-Markov chain algorithm, LZMA) use dictio-
nary scheme, which adopts a dynamic programming framework to
find a near optimal compression solution through a sliding window
that consists of two parts: search buffer and look-ahead buffer. The
encoder in these algorithms tries to find the longest pattern in the
search buffer that matches the pattern in the dictionary (or the look-
ahead buffer). If a matched pattern is found, it is then encoded as
the combination of offset, length and the next symbol. Therefore,
when similar strings are organized adjacent to each other and prop-
er compression algorithm configuration is used, we can expect to
achieve the maximum compression ratio.

However, in practice, the size of the sliding window(the buffers)
cannot be arbitrarily large due to the limited memory capacity
of the encoder. Hence, rather than increase the memory size, we
consider to reorganize the original data into a set of small partitions

before conducting SUTC, and SUTC,, where the size of each
partition is similar to the size of sliding window. Three kinds of
reorganization can be adopted: 1) temporal-based, which partitions
trajectories according to specific time slots; 2) spatial-based, which
partitions trajectories according to spatial space; and 3) hybrid,
which considers both spatial and temporal domains. For example,
one straightforward spatial-based strategy is uniform partition (i.e.,
grid). This paper will not list them with details due to limited space.
In the experiment evaluation section, we will show such kind of
partition can achieve near optimal result, especially when the size
of trajectory data grows larger.

4. Experimental Study

In this section, we first give a brief description of the dataset and the
experiment settings, then we evaluate the performance of proposed
algorithms and compare it with a well-known algorithm, finally we
discuss the effects of trajectory reorganization.

4.1 Dataset and Experimental Settings

The dataset used in the experiment was collected from 48,836 taxis
in Beijing, China during a period of 7 days, and it contains about
500 million trajectory points. The corresponding road network con-
tains 171,186 intersections and 452,474 roads.

In our experiments, preprocessing steps, such as map-matching
and data-cleaning, have been done in advance. In addition, al-
1 the trajectories are matched to the road network using the map-
matching algorithm in [12, 15]. We choose the Douglas-Peucker
(DP) algorithm [16], which is the most representative work for
trajectory compression, as the baseline algorithm. Without loss of
generality, we also perform the well-known LZMA compression
algorithm (implemented version in 7zip) on the symbolized trajec-
tories. The parameters of LZMA are as follows, dictionary size:
64MB, word size: 32, solid block size: 2GB and thread number: 2.

All experiments are coded in C# and conducted on a computer
that is equipped with 2.6GHz 15-3320M CPU and 8GB memory.

4.2 Effectiveness of SUTC Family

777777 z
50 FrsuTe, —¢—
+

I

compression ratio
w
o

10

. . . .
1 10 100 1000 10000 100000
number of trajectories

Figure 4. Compression ratio vs. Number of trajectories (maximum
deviation § = 30m, sampling interval At = 15s).

To evaluate the effectiveness of proposed algorithms, we com-
pare them with DP and LZMA algorithm. Figure 4 illustrates
the compression ratios of SUTC, + LZMA (i.e., we first run the
SUTC, symbolization algorithm and then perform LZMA on the
output. We will refer to it as SUTC, for simplicity), SUTC;, +
LZMA (abbreviated SUTC;, correspondingly), DP + LZMA (ab-
breviated DP.), and LZMA with maximum deviation 6 = 30m,

sampling interval At = 15s and vary the number of trajectories N
from 1 to 100,000.

As the number of trajectories grows larger, the compression
ratios of both SUTC, and SUTC, increase significantly, while the
compression ratios of other algorithms (LZMA and DP.) remain
roughly the same. This is because that, with the number of the
trajectories increases, similar patterns will appear more frequently.
As these similar patterns are transformed to identical strings, the
compression ratio will consequently increase. When the number of
trajectories grows to 100,000, the compression ratio increases to
50:1 which is much larger than simple LZMA and DP... Therefore,
SUTC algorithms are more suitable for compressing large scale
trajectory data.

As indicated in Figure 4, the compression ratio of SUTC, is
generally lower than SUTC,. This is because in the urban area,
taxis tend to have relatively low but frequently-changed speeds.
Thus, the SUTC, algorithm are less likely to generate similar or
identical records than the SUTC,, algorithm. Moreover, SUTC, is
supposed to have better performance when the moving objects are
running on long roads with constant speeds, e.g., in the high way.

150

compression ratio

100

50

0 . . . N
1 5 10 15 20 30

sampling interval(s)

Figure 5. Compression ratio vs. Sampling interval (N =
10,000, 6 = 30m).

Figure 5 illustrates the relationship between the compression
ratio and the sampling interval with § = 30m and N = 10, 000.
Smaller sampling interval means more redundancy, i.e., there will
be more sampling points in the same road with similar positions
and velocities. The redundancy will finally be converted to simi-
lar or identical strings in SUTC, and SUTC;. Consequently, the
compression ratio will increase with the decrease of the sampling
interval.

We also vary the value of the maximum deviation § before/after
symbolization from 5 meters to 200 meters to evaluate the per-
formance of proposed algorithms. Figure 6 shows the effect of
maximum allowed deviation: §, with the number of trajectories
N = 10,000. Larger error tolerance means fewer changes in the
converted trajectory points, i.e., more identical string patterns and
more redundancy. Although the size of the file generated by the
SUTC symbolization algorithms will not decrease much, the LZ-
MA algorithm will achieve a much better performance because of
the redundancy. Hence, the compression ratio increases with the
increase of §. However, when & continues to increase (exceeding
75m), which roughly equals to the half average length of the roads,
the growth rate of the compression ratio becomes very low. This is
because the symbolization strategies are relying on the road net-
work, which can further optimized with some methods like [4].
To better understand this observation, we further study another at-
tributes, average deviation.

70 T

60 |.SUTC, —K—

50
40

WM
0 T

10

|

compression ratio

0 1 1 1 1 1
5 10 20 30 50 75 100

maximum deviation(m)

Figure 6. Compression vs. Maximum deviation (N =
10,000, At = 15s).

When § becomes smaller, the compression ratios of all the algo-
rithms decrease. Generally, the SUTC algorithms are less sensitive
to § which means these algorithms can achieve a good compression
ratio while being highly accurate.

Figure 7 shows the average deviation of the compression algo-
rithms. Although all the algorithms have the same maximum devia-
tion, SUTC algorithms have much lower average deviations. This is
because no matter how large the maximum deviation is, the SUTC
algorithms will always keep the skeleton of the trajectory, i.e., the
road sequence passed by the moving objects. Therefore, SUTC al-
gorithm tend to be more accurate with identical maximum devia-
tion.

40

d=75 ——
=100 &35

30

25

average deviation

20

15 ’—[

suTC, SuTC, DP,

Figure 7. Average deviation (N = 10,000, At = 15s).

Figure 8 demonstrates the effects of trajectory reorganization
with N = 10,000, = 30m. In this experiment, we implemen-
t a straightforward spatial-based reorganization on the trajectories
with the following steps. First, we divide the road network into
grids, and then split individual trajectory into shorter trajectories
based on these grids. Next, we put the trajectories within the same
gird into the same file. Finally, we do the compression on reorga-
nized files. Due to the reorganization, similar trajectories are more
likely to fall into the same sliding window of LZMA. As a re-
sult, the compression ratio is relatively good even when the par-
tition size of the compression algorithm is quite small, e.g., 32KB.
Moreover, smaller partition size usually means less memory con-
sumption. Hence, one of the benefits of the reorganization is that

it reduces the amount of memory and processing time required to
achieve same compression ratios.

50 :
suTC, ———
sSuTC," —¥—
Optimal -
45 | i
2
IS
& 40t |
2
(]
s
£
o
o
35y E
{
30 E
. . .
32K 1M 16M 256M 2G

partition size(byte)

Figure 8. Effects of Trajectory Reorganization (NN @ =
10,000, At = 155,06 = 30m. The SUTC, algorithm with
reorganization is referred to as SUTC; for short).

Table 1 shows the time required by these algorithms to process
about 25 million trajectory points. As indicated in Table 1, SUTC,
is quite competitive to DP, and both of them are more efficient
than the simple LZMA. Compared to SUTC,, SUTC, is much s-
lower. This is mainly because SUTC, involves the map-matching
and a lot of time-consuming shortest path calculation while com-
puting the velocity between two adjacent trajectory points.

Table 1. Efficiency (The number of trajectories N = 10,000
which contains 25+ million trajectory points, At = 15s,6 =
30m; MapM: Map Matching, TSym: Trajectory Symbolization,
LZMA:The Lempel-Ziv-Markov chain algorithm in 7Zip).

Step 1: | Step2: | Step 3: | Total

Algs MapM | TSym | LZMA | (sec.)
LZMA 0 0 813 813
DP., 0 114 221 335
SUTGC, 0 169 331 500
SUTC, 3883 376 314 4573

5. Conclusion

In this paper, we investigate the problem of how to compress
large scale urban trajectory data, and propose a scalable urban
trajectory compression solution called SUTC. The experimental
results on real dataset demonstrate that SUTC algorithms manage
to achieve much higher compression ratios than the representative
DP compression algorithm when processing large scale trajectory
data. In addition, the efficiency of SUTC is quite competitive to DP.
Therefore, compared to existing trajectory compression algorithms,
the proposed algorithms are more suitable for processing large
scale urban trajectory data. In the future work, we will improve
SUTC algorithms to better handle low-sampling-rate trajectories
and investigate the compression engine with indexing components
to support traditional queries on compressed data.

Acknowledgments

We would like to thank Prof. Xiaofang Zhou for useful discussions.
We also acknowledge the help from Dr. Jiajie Xu and Dr. Xike Xie
for providing valuable suggestions.

This work was supported by the National Natural Science Foun-
dation of China (No. 61202064), the National High Technology
Research and Development Program of China (863 Program) (No.
2013AA01A603), and the Strategic Priority Research Program of
the Chinese Academy of Sciences (No. XDA06010600).

References

[1] E. G. Agency. Global satellite navigation system (gnss) market report.
Technical report, Oct 2013.

[2] Y. Cai and R. Ng. Indexing spatio-temporal trajectories with cheby-
shev polynomials. In SIGMOD, pages 599-610, 2004.

[3] W. S. Chan and F. Chin. Approximation of polygonal curves with
minimum number of line segments or minimum error. Int. J. of
Comput. Geom. Appl.(IJCGA), 6(1):59-77, 1996.

[4] A. Civilis, C. S. Jensen, and S. Pakalnis. Techniques for efficient road-
network-based tracking of moving objects. IEEE Trans. on Knowl.
and Data Eng., 17(5):698-712, May 2005.

[5] D. H. Douglas and T. K. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature.
Canadian Cartographer, 10:112-122, 1973.

[6] R. Gotsman and Y. Kanza. Compact representation of gps trajectories
over vectorial road networks. In SSTD, pages 241-258, 2013.

[7] J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and T. Wolle.
Compressing spatio-temporal trajectories. Computational Geometry —
Theory and Applications, online, Feb. 2009.

[8] N. Honle, M. Grossmann, S. Reimann, and B. Mitschang. Usability
analysis of compression algorithms for position data streams. In GIS,
pages 240-249, 2010.

[9] G. Kellaris, N. Pelekis, and Y. Theodoridis. Trajectory compression
under network constraints. In SSTD, pages 392-398, 2009.

[10] M. Koegel, W. Kiess, M. Kerper, and M. Mauve. Compact Vehicular
Trajectory Encoding. In VTC, pages 1-5, 2011.

[11] R. Lange, F. Diirr, and K. Rothermel. Efficient real-time trajectory
tracking. The VLDB Journal, 20(5):671-694, Oct. 2011.

[12] Y. Li, C. Liu, K. Liu, J. Xu, F. He, and Z. Ding. On efficient map-
matching according to intersections you pass by. In DEXA, pages 42—
56, 2013.

[13] B. Lin and J. Su. One way distance: For shape based similarity search
of moving object trajectories. Geoinformatica, 12(2):117-142, 2008.

[14] K. Liu, K. Deng, Z. Ding, X. Zhou, and M. Li. Pattern-based moving
object tracking. In SIGSPATIAL TDMA, pages 5-14, 2011.

[15] K. Liu, Y. Li, F. He, J. Xu, and Z. Ding. Effective map-matching on
the most simplified road network. In GIS, pages 609-612, 2012.

[16] N. Meratnia and R. de By. Spatiotemporal compression techniques for
moving point objects. In EDBT, pages 765-782, 2004.

[17] J. Muckell, J.-H. Hwang, C. T. Lawson, and S. S. Ravi. Algorithms
for compressing gps trajectory data: an empirical evaluation. In GIS,
pages 402—405, 2010.

[18] M. Potamias, K. Patroumpas, and T. Sellis. Sampling trajectory
streams with spatiotemporal criteria. In SSDBM, pages 275-284,
2006.

[19] D. Sacharidis, K. Patroumpas, M. Terrovitis, V. Kantere, M. Potamias,
K. Mouratidis, and T. Sellis. On-line discovery of hot motion paths.
In EDBT, pages 392-403, 2008.

[20] F. Schmid, K.-F. Richter, and P. Laube. Semantic trajectory compres-
sion. In SSTD, pages 411-416, 2009.

[21] G. Trajcevski, H. Cao, P. Scheuermann, O. Wolfson, and D. Vaccaro.
On-line data reduction and the quality of history in moving objects
databases. In MobiDE, pages 19-26, 2006.

[22] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The
implementation and performance of compressed databases. SIGMOD
Rec.,29:55-67, Sep 2000.

[23] Y. Zheng and X. Zhou, editors. Computing with Spatial Trajectories.
Springer, 2011.

