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ABSTRACT
Forecasting spatially correlated time series data is challenging be-
cause of the linear and non-linear dependencies in the temporal
and spatial dimensions. Air quality forecasting is one canonical ex-
ample of such tasks. Existing work, e.g., auto-regressive integrated
moving average (ARIMA) and artificial neural network (ANN), ei-
ther fails to model the non-linear temporal dependency or cannot
effectively consider spatial relationships between multiple spatial
time series data. In this paper, we present an approach for forecast-
ing short-term PM2.5 concentrations using a deep learning model,
the geo-context based diffusion convolutional recurrent neural net-
work, GC-DCRNN. The model describes the spatial relationship by
constructing a graph based on the similarity of the built environ-
ment between the locations of air quality sensors. The similarity is
computed using the surrounding “important” geographic features
regarding their impacts to air quality for each location (e.g., the area
size of parks within a 1000-meter buffer, the number of factories
within a 500-meter buffer). Also, the model captures the temporal
dependency leveraging the sequence to sequence encoder-decoder
architecture. We evaluate our model on two real-world air qual-
ity datasets and observe consistent improvement of 5%-10% over
baseline approaches.
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1 INTRODUCTION
Fine particulate matter (PM2.5) consists of particles with aerody-
namic diameters less than 2.5 µm. Typically, moving vehicle ex-
hausts, industrial emissions, and burning sources (e.g., coal com-
bustion and wildfiles) are the primary contributors to generate fine
particulate matters. Many epidemiological studies [23, 27] have
shown that exposure to PM2.5 is strongly associated with various
health effects. Long-term (chronic) exposure may lead to deterio-
ration of the respiratory system [11], cause damage to the body’s
immune system and increase the risk of cardiovascular diseases
[15]. Short-term (acute) exposure also raises acute health concerns
such as eye irritation and breathing difficulty. Sensitive groups like
the elderly, children and people with lung and heart diseases are
more vulnerable to air pollution-related diseases, such as children
asthma attack [21]. Besides, fine particulate matter and its deriva-
tives also cause adverse effects on the environment such as poor
visibility, global climate change [29], and ecological damage [33].

In 2006, the World Health Organization (WHO) suggested that
long-term exposures (an annual average of PM2.5 concentrations)
should not exceed 10mg/m3 and short-term exposures (24-hour
average of PM2.5 concentrations) should not exceed 25mg/m3 [22].
Many countries have built air quality monitoring stations to report
the concentrations of major pollutants such as sulfur dioxide (SO2),
nitrogen dioxide (NO2), and particulate matters (PM2.5 and PM10).
In the United States, the Environmental Protection Agency (US EPA)
has established the ambient air monitoring network, which provides
hourly measurements for various pollutants (e.g., PM2.5 and PM10).
US EPA also set a national air quality standard, the air quality index
(AQI), to indicate health risk level of the pollution level. US EPA has
defined the AQI values for five major air pollutants:1 the ground-
level ozone, particle pollution, carbon monoxide, sulfur dioxide,
and nitrogen dioxide. The AQI consists of six categories: “Good”,
“Moderate”, “Unhealthy for Sensitive Groups”, “Unhealthy”, “Very
Unhealthy”, and “Hazardous” with a range from 0 to 500. One can
convert the concentration value to the corresponding AQI and its
health risk category. For example, a 50 µg/m3 PM2.5 measurement
corresponds to an AQI value of 12 and is in the “Good” category,
which means “It’s a great day to be active outside” according to the
EPA definition. Generally, an AQI value below 100 is an acceptable
range. When the AQI value is growing to 100, it is considered to be

1https://airnow.gov/index.cfm?action=aqibasics.aqi
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unhealthy for certain sensitive groups and the public need to take
protective actions.2

Besides establishing monitoring stations to report the real-time
air quality status, there is an increasing demand to forecast the air
quality pollutants, which not only supports governments to make
policies in pollution control but also informs the general public to
take advanced actions like staying at home. However, forecasting
air quality is a challenging task. First, air quality values can vary
significantly over time and across locations. Figure 1 shows the
PM2.5 AQIs at two reporting areas in Los Angeles, “Central LA
CO” and “Santa Clarita Vly”, during the period of early January
and July. We have observed that “Central LA CO” generally shows
higher PM2.5 AQI values than that in “Santa Clarita Vly” (could
be the heavy traffic congestion in “Central LA CO”). Besides, the
PM2.5 AQI values are significantly higher in July than January
(could be the holiday events in July). Second, sudden changes in
the observations make it challenging for a general model to cap-
ture the temporal patterns and to forecast the future values. Such
abrupt changes might be caused by some unusual situations, such
as strong winds, raining, events (e.g., fireworks), and sudden fac-
tory emissions. Figure 1 shows extremely high PM2.5 AQI values
during the Independence Day Holiday (from July 4th to 6th ) that
holds many celebration activities (e.g., fireworks). Third, air quality
is influenced by various complex factors, such as meteorological
effects, surrounding land usages, and the chemical processes of air
pollutants. These challenges together with the fact that air quality
monitoring stations are usually sparse make it difficult to forecast
air quality values.

Figure 1: An example of PM2.5 AQIs at two reporting areas
in Los Angeles in early July (left) and January (right) 2017

An abundant existing work takes advantage of the observation
data from air quality monitoring stations to build and validate
real-time air quality forecasting (RT-AQF) models [6, 10, 26] for
computing future air quality status in a short term (1-5 days). Vari-
ous time series forecasting methods have been applied to the air
quality forecasting problem. The commonly used methods include

2https://airnow.gov/aqi/aqi-basics

auto-regressive integrated moving average (ARIMA) [14], Kalman
filtering (KF) [9], regression method [5], and artificial neural net-
work (ANN) [25]. ARIMA and KF only work for stationary time
series data, which fail to capture the dynamic trends in the air
quality data, while regression methods like Linear Regression are
incapable of handling the non-linearity in time series data. ANN
based methods [7, 20, 24, 25] have been used to solve RT-AQF prob-
lems for various air pollutants. Though ANN is able to capture
non-linear temporal patterns in time series data, it fails to handle
spatial dependency in location-dependent time series data [20, 24].

A general way to define the spatial dependency is using geo-
graphic distance [34], i.e., if a sensor location is close to the target
location, the sensor is considered as the neighbor that will con-
tribute largely for forecasting the air quality at the target location.
However, when the monitoring stations are sparse or far apart from
each other, the geographic distance becomes less informative as all
distances are similarly high values. Therefore, geographic distance
cannot fully capture the similarity in environmental characteristics
(like near industrial areas or green lands) that have various impacts
on air quality. In [34], the authors proposed a hybrid forecasting
model to separately deal with temporal and spatial correlations in
air quality measurements. The hybrid forecasting model includes
a temporal predictor (linear regression) to model the air quality
trend at a target station, a spatial predictor to model the impact
of meteorological data and air quality readings from other sta-
tions, an aggregator to integrate the results from the previous two
predictors, and an inflection predictor to detect the sudden drops.
Though the proposed forecasting model demonstrated promising
performance, it uses fixed-distance (geographic distance) buffers
to capture neighborhoods, which might not be able to represent
spatial dependency sufficiently [19]. Also, it uses separate mod-
els for correlating temporal and spatial patterns, which might not
comprehensively represent the spatiotemporal patterns as a whole.
It remains a challenge to build a general air quality forecasting
model with a universe mean to define the spatial dependency for
air quality in location-dependent time-series data and handle the
spatial and temporal dependencies jointly.

In this paper, we propose a novel deep learning model, the geo-
context based diffusion convolutional recurrent neural network
(GC-DCRNN), to forecast the PM2.5 concentrations in the next sev-
eral hours (e.g., 1, 6, 12, 18, and 24 hours) at a given location. In our
method, we utilize the neighborhood characteristics to represent the
spatial correlation, which means two locations would have similar
air quality conditions if they share a similar built environment. We
take advantage of our previous work on air quality prediction [19]
to automatically select the “important” geographic feature types
(e.g., factories within 1,000 meters) that have a significant impact
on air quality at a given location. We compute the similarity of the
“important” geographic feature types around sensors and construct
a graph in which the nodes are the sensors and edge weights are the
similarities (section 3). Then we apply the pre-constructed graph
in the diffusion convolutional recurrent neural network (DCRNN)
[18] to build an air quality forecasting model (GC-DCRNN). The
inputs of the GC-DCRNN model are the geo-context based graph,
a sequence of air quality readings, and a sequence of meteorolog-
ical data (e.g., humidity, temperature, and wind speed) over the
past few hours (e.g., 24 hours) at all the stations. The outputs are



the forecasted PM2.5 AQIs/concentrations, i.e., a sequence of fore-
casting values in next 24 hours at all the stations. In general, the
GC-DCRNN model utilizes the diffusion convolutional operation
on the geo-context based graph to capture the spatial dependency.
To jointly model the spatial and temporal dependencies in the air
quality data, the model further integrates the diffusion convolu-
tional operation into the recurrent neural network (section 3). We
test our model on two real-world air quality datasets in Los Angeles
and Beijing and compare our forecasting results to other existing
approaches. The experiments show our GC-DCRNN model consis-
tently outperforms other air quality forecasting methods (section
4).

The main contribution of this paper is that we present the GC-
DCRNN model that jointly manipulates the spatial and temporal
dependencies in location-dependent air quality time series data for
forecasting.We utilize an automatic approach to describe the spatial
dependency by considering the similarity of the built environment
with regard to air quality. We construct a geo-context based graph
that enables the DCRNN model to handle the spatial correlations
by automatically selecting important geographic feature types that
have a significant impact on air quality pollutants. Our model im-
proves the traditional air quality models that overlook the spatial
dependency. The forecasting results from our model are particularly
important in the study of air pollution and can help with the anal-
ysis of air pollution-related diseases, such as predicting children
asthma attack.

The rest of this paper is organized into four sections. Section 2
presents an introduction to the data sources. Section 3 describes
the methodology of the deep learning model for forecasting PM2.5
concentrations. Section 4 discusses the related work on air quality
forecasting and time series forecasting. Section 5 presents the ex-
periments and evaluation of the results. Finally, Section 6 concludes
the paper with a discussion of future work.

2 DATA SOURCES
In general, our forecasting model utilizes the following datasets: 1)
the PM2.5 time series data, which are for training and validating
the model, 2) the meteorological time series data, which serve as
auxiliary features in the model, 3) the geographic data for building
a graph that denotes the spatial relationship between monitoring
stations.

2.1 AQS (Air Quality System) Data
2.1.1 Los Angeles air quality data from EPA. We collect the Los

Angeles air quality data, including the PM2.5, PM10, and O3 AQI
observations, every hour through the EPA’s Airnow web service3
using multiple zip codes. A total of 13 reporting areas are providing
PM2.5 AQI observations in the Los Angeles Metropolitan Area
covering an area of approximate 4,751 mi2 (Figure 2). Table 1 gives
an example of the structured PM2.5 AQIs in one of the reporting
areas, Central LA CO.

2.1.2 Beijing air quality data from Biendata. Biendata provides
publicly accessible air quality data of Beijing in the KDD CUP of

3https://docs.airnowapi.org/webservices

Fresh Air.4 It contains hourly air quality concentrations for various
pollutants in Beijing including PM2.5, PM10, NO2, CO, O3, and
SO2. As Figure 3 shows, there are a total 35 monitoring stations in
Beijing, with the approximate area size of 6,490 mi2.

Table 1: Example of PM2.5 AQIs in Central LA CO

Monitoring Station Timestamp PM2.5 AQI
Central LA CO 2017-03-04 12:00:00 50
Central LA CO 2017-03-04 13:00:00 53
Central LA CO 2017-03-04 14:00:00 55
Central LA CO 2017-03-04 15:00:00 58
Central LA CO 2017-03-04 16:00:00 60

Figure 2: The locations of Reporting Areas that provide
PM2.5 AQI observations in Los Angeles. The approximate ge-
ographic size of the displayed map is 75×60 mi2.

2.2 Meteorological Data
We collect meteorological data through the Dark Sky API.5 Dark
Sky reports fine-scale weather data (including temperature, humid-
ity, wind speed, wind direction, etc.) all over the world. For each
reporting area or monitoring station in Los Angeles and Beijing, we
query hourly meteorological data based on the coordinates of each
location. The meteorological data have the same time resolutions
(i.e., hourly) as the air quality data.

2.3 Geographic Data
OpenStreetMap (OSM) is the crowd sourced world map. It provides
a variety of geographic features, e.g., land uses, roads, water areas,
and buildings.6 For example, the geographic feature type “road”,
represented as line, contains many subtypes such as motorway and
pedestrian roads. “Land use” describes the function of an area, such
4https://biendata.com/competition/kdd_2018/data/
5https://darksky.net/dev/docs
6http://wiki.openstreetmap.org/wiki/Map_Features



Figure 3: The locations of monitoring stations in Beijing,
China. The approximate geographic size of the displayed
map is 78×80 mi2.

as industrial areas and commercial areas. “Water area” represents
the area of a lake or pond. In this paper, our approach computes
the values of the geographic feature types within various buffers
around the sensor locations utilizing OpenStreetMap data.

3 METHODOLOGY
Our goal is to forecast the PM2.5 values in next 24 hours at a given
location. We construct a graph to represent the spatial relationship
in the sensor network. We define an indirect graph G = (V, E, A) to
represent the network, where V is a set of sensor nodes, E is a set of
edges that link the sensors, and A is a weighted adjacency matrix
representing the nodes proximity (e.g., the geographic similarity).
Denote the observed data on G as a graph signal X ∈ RN×P , N
is the number of nodes in the graph and P is the number of total
features on each node. X consists of two parts, the air quality
readings (denoted asXR ∈ RN×PR ) and auxiliary features (denoted
as XA ∈ RN×PA ). Note that P = PR + PA. Let X (t ) represents the
graph signal at time t , T ′ represents the number of previous hours,
i.e., from (t +T ′ − 1) to (t ), and T represents the number of future
hours, i.e., from (t + 1) to (t +T ). The model aims to learn a function
h that maps T ′ (historical graph signals) to future T graph signals,
given a graph G:

[X (t+T ′−1), · · · ,X (t );G] h
−→ [XR

(t+1), · · · ,XR
(t+T )]

3.1 Data Preprocessing
In practice, time series data or streaming data are generally incom-
plete and contain noise (or outliers). Exceptional abruptions of the
monitoring sensors might cause missing values in air quality data
and meteorological data. The missing values could have a large

impact on the performance of the analytic models. Therefore, it is
essential to eliminate the missing values in the data.

Our approach computes the mean value in a six-hour sliding
window to replace the missing values. For example, assume we
have an hourly time series of PM2.5 AQIs, [... , 18, 23, 27, null, 30,
25, 22, ...]. By applying a six-hour sliding window, we are able to fill
up the null value with the mean of the window [18, 23, 27, null, 30,
25, 22], that is 24. The data preprocessing step of imputing missing
values is only performed on the training data and the testing data
are untouched.

3.2 Graph Construction
In this section, we compute the similarity of the “important” ge-
ographic features around monitoring stations to represent their
spatial correlation and construct the graph for diffusion convolu-
tion in the next step. We take advantage of our previous work [19],
which uses a data-driven method to automatically select critical
geographic features that have a significant impact on air quality.

3.2.1 Grouping Stations on PM2.5 Concentrations. Our approach
first identifies the monitoring stations that have similar PM2.5
AQI temporal patterns. For example, the monitoring stations near
industrial areas always show a higher PM2.5 value than that in
mountain areas, so they should be grouped into separate clusters.
However, traditional cluster methods like K-means do not work for
high dimensional time series data [2]. Due to the high dimension
of our air quality data (more than 7,000, each hour is a dimension),
we utilize the piece-wise aggregate approximation (PAA) [12] to
reduce the dimension by representing the original sequences with
the average of daily highest three values and the average of daily
lowest three values. Then we use K-means to group the lower
dimensional data (less than 600) after applying PAA with the K at
the elbow point to get the clustering label for each location.

3.2.2 Constructing Geographic Abstraction. Our approach com-
putes an aggregated value for each geographic feature type within
various buffers (e.g., 100 meters and 3,000 meters) around each
monitoring station using OpenStreetMap data and uses the values
to construct a feature vector. Figure 4 is an example showing how
we construct the geographic abstraction vector. There are roads,
land uses, and buildings around the monitoring station, A, with
the 100-meter and 200-meter buffers. For polygon features, such
as land uses, we compute the sum of areas for various types (OSM
types) within some buffers. Monitoring station A has 500 m2 water
areas within a 100-meter buffer while 950 m2 water areas and 740
m2 green lands within a 200-meter buffer, which generates the geo-
graphic abstraction vector as [500, 0, 950, 740]. For the line features,
like roads and aeroways, we take the sum of lengths of various fea-
ture types as the geographic abstraction. Monitoring station A has
23-meter pedestrian and 30-meter motorway within a 100-meter
buffer while 43-meter Pedestrian and 200m Motorway within a 200-
meter buffer. Thus, the geographic abstraction vector is constructed
as [23, 30, 43, 200]. For point features, like buildings, our approach
counts the number of various feature types. For example, monitor-
ing station A has 2 houses and 2 commercial buildings within a
100-meter buffer while 6 houses and 5 commercial buildings within



a 200-meter buffer, which corresponds to the geographic abstrac-
tion vector as [2, 2, 6, 5]. The entire feature vector of geographic
abstraction for monitoring station A can be represented as [500,
0, 950, 740, 23, 30, 43, 200, 2, 2, 6, 5]. In practice, we create buffers
from 100 meters to 3,000 meters with an interval of 100 meters and
generate the value for each unique geographic feature type with
the buffers.

Figure 4: Examples of the geographic features (i.e., roads,
land uses, and buildings) and the various geographic feature
types in the 100-meter and 200-meter buffers

3.2.3 Computing Geo-Context. Our approach utilizes the clus-
tering labels and the geographic abstraction as the inputs of a
random forest classifier to automatically quantify the importance
of individual components in the geographic abstraction vector. The
random forest classifier identifies the important geographic feature
types and a buffer size that have the most impact on PM2.5 concen-
trations. For unimportant features, the model gives the importance
as zero. Our approach keeps those important feature components
(non-zeroes) to form a new feature vector, called the geo-context.
To construct the graph, we compute the similarity between the
geo-context of the monitoring stations as the edge weight by using
the Euclidean distance. In the next step, we embed the graph in the
DCRNN model to handle the spatial dependency.

3.3 Diffusion Convolution
In this section, we describe the diffusion convolution process for the
constructed graph. Traditional convolutional neural network (CNN)
works for the grid-structured data, e.g., image. The convolution
operation scans across the image with a filter to extract the features.
For example, in Figure 5, suppose the 3 × 3 filter is defined to add
all the elements within the filter, we can map a 5× 5 input image to
a 3× 3 output image whose elements are the sum of each 3× 3 grids

based on the filter. The diffusion convolution extends this idea to
the general graph-structured data. DCRNN [18] defines diffusion
convolution as the combination of diffusion processes with different
steps on the graph. Specifically, the k diffusion step represents the
“distance” to the center point (i.e., the current forecasting location).
Figure 6 shows an example of diffusion process, at each step i,
the model looks at the neighbors that are k-step away from the
center point and computes the transition matrices for this step.7
The diffusion convolutional filter then adds the transition matrices
with some probability θ , which is learned during the training step.
Formally, the diffusion convolution operation⋆G over a graph signal
X ∈ RN×P and a filter fθ is defined as:

X :,p⋆G fθ =
K−1∑
k=0

(
θk (D

−1A)k
)
X :,p (1)

where θ ∈ RK×2 are the parameters for the filter, D denotes
the diagonal degree matrix of the graph and D−1A represents the
transition matrices of the diffusion process.

The diffusion convolutional layer is defined with the defini-
tion of diffusion convolutional operation in Equation 1. It maps
P-dimensional features to Q-dimensional output, which is similar
to extracting features in CNN.

Figure 5: An example of Convolutional Neural Networks

3.4 DCRNN
Besides spatial dependency, the model addresses temporal depen-
dency with a recurrent neural network (RNN) model, which is
commonly used for handling sequential data. The basic idea of
using RNN for time series data analysis is that it not only considers
the current input as in the traditional machine learning algorithms,
but also makes use of the information from the previous time point.
For example, in Figure 7, suppose X (t ) is the input at time t and
H (t ) is the hidden state at time t , which is the memory cell in the
network.H (t ) is obtained from both the previous hidden cellH (t−1)

7Reprinted from the poster of [18] with permission from the corresponding author.



Figure 6: Example Diffusion Process

and current input X (t ), as H (t ) = f (WX (t ) +UH (t−1)) where f is
a nonlinear variation function like tanh and relu.

DCRNN leverages the gated recurrent units (GRU) [4] as the cell,
which is a simple yet powerful variant of RNN. As Figure 8 shows,
the GRU structure contains two gates: the reset gate and update
gate. The reset gate is used to decide if H t−1 will pass information
to H t . The update gate is used to decide how much information of
H t−1 will give to H t . Generally, GRU first defines the gate signals
based on the input (X t and H t−1) with the following formula:

r (t ) = σ (W rX
(t ) +U rH

(t−1) + br )

u(t ) = σ (W uX
(t ) +UuH

(t−1) + bu )

where r (t ) is the reset gate andu(t ) is the update gate at time t.W r ,
U r ,W u , andUu are the parameters for corresponding gate. The
variable br and bu are the bias.

After getting the gate signals, the previous hidden status H t−1
is “reset” through the reset gate and combined with X t with the
following formula:

C(t ) = tanh(W cX
(t ) +U c (r

(t ) ⊙ H (t−1)) + bc )

whereW c andU c are the parameters. The variable bc is the bias.
The operation ⊙ is the Hadamard product, which multiplies the
elements on the corresponding locations in the two matrices.

Then the update gate chooses to keep or ignore the information
to achieve the new hidden status at time t.

H (t ) = u(t ) ⊙ H (t−1) + (1 −u(t )) ⊙ C(t )

In order to capture the spatiotemporal dependencies, DCRNN
replaces the matrix multiplication in GRU with the diffusion con-
volution as following:

r (t ) = σ (Θr⋆G [X
(t ),H (t−1)] + br )

u(t ) = σ (Θu⋆G [X
(t ),H (t−1)] + bu )

C(t ) = tanh(ΘC⋆G [X
(t ), (r (t ) ⊙ H (t−1))] + bc )

H (t ) = u(t ) ⊙ H (t−1) + (1 −u(t )) ⊙ C(t )

where ⋆G denotes the diffusion convolution defined in Equation
1 and Θr ,Θu ,ΘC are parameters for the corresponding filters.

To conduct the multi-step ahead forecasting (i.e., in next 1-24
hours), DCRNN utilizes the Sequence to Sequence architecture [28].
Precisely, during the training step, sub-sequences of the historical
time series are fed into the encoder. For example, a vector of 6-
hour PM2.5 AQIs as [13, 14, 16, 21, 20, 19] is put in the encoder.
The decoder takes the final states of the encoder as initialization

and emits the corresponding result as a sequence, which is fed
with given ground truth observations, i.e., the actual PM2.5 AQI
values for the next 6 hours. During the testing step, the model
generates forecasting results, which are compared with ground
truth to evaluate the model. In this way, the model can generate air
quality forecasting results given data from the previous hours by
handling both spatial and temporal dependency simultaneously.

Figure 7: An example of Recurrent Neural Networks

Figure 8: Gated Recurrent Unit Structure

4 EXPERIMENTS AND RESULTS
We utilized the air quality data, meteorological data, and Open-
StreetMap data for building the air quality forecasting model and
evaluating our model on two real-world datasets (Los Angeles and



Beijing) described in Section 2. We conducted the experiment in a
Docker container deployed on the GPU server with four physical
cores and 64GB memory for the deep learning model. The model
was implemented with Python 2.7 and the Tensorflow [1] frame-
work. The baseline models were executed on CPU only with 8GB
memory. All geospatial computing was done in PostGIS.

4.1 Environmental Settings
In the experiment, we utilized the PM2.5 observations from 2017-
01-01 00:00:00 to 2018-03-01 00:00:00 for training and testing our air
quality modeling approach with Los Angeles and Beijing datasets.
We split the air quality data as well as the meteorological Data into
training data (from 2017-01-01 to 2017-12-31) and testing data (from
2018-01-1 to 2018-03-01). We performed some data preprocessing
for the air quality data and the meteorological data. For the Los
Angeles dataset, we removed four reporting areas (i.e., E San Gabriel
V-1, NW Coastal LA, SW Coastal LA, and E San Fernando Vly) whose
air quality data are identical to some other areas. Note that the
Beijing dataset includes nearly four times more available air quality
reporting stations than the Los Angeles dataset (35 vs. 9).

We used the previous 24-hour observations (i.e., sequence length
= 24) to forecast the next 24-hour PM2.5 values (i.e., horizon =
24) for evaluating the performance of our air quality forecasting
model. Suppose Y = [y1,y2, · · ·,yn ] represents the ground truth
and Ŷ = [ŷ1, ŷ2, · · ·, ŷn ] represents the forecasting values, where
n denotes the indices of the observed samples. We evaluated the
model by comparing our results with a number of baseline methods
by using the following metrics and missing values were excluded
in calculating these metrics:

1. Mean absolute error (MAE) is simply the summation of dif-
ference between two corresponding variables divided by the total
number of observations:

MAE =

∑n
i=1 |yi − ŷi |

n

2. Root Mean Squared Error (RMSE) was calculated in a similar
fashion as MAE given by the formula:

RMSE =

√∑n
i=1 |yi − ŷi |

n

4.2 Baseline Methods
4.2.1 Linear Regression (LR). LR can capture linear dependen-

cies between the input variables (e.g., features) and the output
variables (e.g., predictions). These predictions are auto-correlated,
for example Xt+1 usually depends on Xt . Linear Regression studies
the relationships between the variables and works well with data
that follow a linear trend. For time series analysis, LR captures the
autocorrelation of variables and with some lag variables emulates
Autoregression, a time series analysis technique. For example, we
can forecast 24 hours ahead based on the previous 24-hour data.
Here the number of lag variables or sequence length is equal to 24
and horizon is equal to 24.

4.2.2 Vector Autoregression Regression (VAR). VAR is similar
to LR but it considers multiple time series data to predict the in-
dependent variable for each time series. For example, instead of
using only one time series data from one sensor, all time series

from other sensors are fed into the model. The intuition behind is
that information from other sensors might be correlated with the
independent variable.

4.2.3 Gradient Boosting Machines (GBM). We use GBM as the
third baseline method. GBM can extract non-linear patterns that
LR and VAR cannot. The objective here is to minimize the error of
the tree-based algorithm by adding weak learners with the help of
a gradient descent like procedure. This algorithm follows a step-
wise approach to minimize the loss and at every point, a new weak
learner is added and the old ones are left unchanged.

4.3 Result and Discussion
In this section, we present the evaluation result of our model on
forecasting PM2.5 values for two cities, Los Angeles and Beijing.
Table 2 shows the details about two datasets. We have observed
that the Beijing dataset has a much larger standard deviation of
PM2.5 values than the Los Angeles dataset, so we expect that the
air quality in Beijing is more challenging for the forecasting task.
The PM2.5 measurements are represented as PM2.5 AQIs in the Los
Angeles dataset and PM2.5 concentrations in the Beijing dataset.

In graph construction, our model automatically selected impor-
tant geographic feature types that have a great affect on PM2.5
values. Table 3 shows the top 10 selected geographic feature types
ranked by the importance in Los Angeles. Table 4 shows the top 10
important geographic feature types in Beijing. We have observed
that “parking”, “primary_road”, “railways”, and “motorway” are
probably related to the traffic emission sources; “commercial”, “
hospital”, “college” and “residential” are the places that attract peo-
ple and traffic; “factory” could be the source of air pollutants; “pitch”,
“forest”, and “park” are the open green areas, which might improve
the air quality.

Table 5 shows the comparison of the forecasting results between
the baseline methods (LR, VAR, and GBM) and the GC-DCRNN
model in Los Angeles. Among the baselines, the VAR outperformed
other baseline methods, which demonstrates that time series data
from other locations can help improve the forecasting accuracy.
Our GC-DCRNNmodel shows better performance than the baseline
methods regarding both metrics when the horizon is larger than 6.
However, when the horizon is small (h<=6), our model is slightly
worse than the baseline methods, which might be due to the strong
linearity when horizon is small (h<=6) in the Los Angeles dataset.

Table 6 shows that the GC-DCRNN model achieved the best
performance among all the forecasting horizons with a 5%-10% im-
provement of MAE on the Beijing dataset. When the horizon grows,
our model shows an significantly increasing improvement com-
paring with the baseline methods. This indicates our GC-DCRNN
model can effectively exploit spatial dependency in forecasting
large horizons and is more powerful in dealing with complex non-
linearity when the horizon increases. Compared with the result of
modeling the Los Angeles dataset, we find that more sensors in the
network graph might be helpful for the GC-DCRNN model since
Beijing has more monitoring stations than Los Angeles does.

To investigate the effect of spatial dependency modeling, we
designed two variants of the propose model, i.e., DCRNN with
identity-graph (IG-DCRNN), which uses the identity matrix as the



adjacency matrix, and geographical-distance based DCRNN (GD-
DCRNN), which uses the geographical distance to measure the
similarity and construct the adjacency matrix. Table 7 shows the
comparison of GC-DCRNN, IG-DCRNN, and GD-DCRNN in term
of MAE on the Beijing dataset. We have observed that the geo-
context based DCRNN (GC-DCRNN) outperformed IG-DCRNN
with an improvement in MAE from 2% to 9% and outperformed
GD-DCRNN with an improvement in MAE from 1% to 5%, which
shows the importance of appropriate spatial dependency modeling.

To further evaluate our model, we implemented a state-of-art
hybrid method [34] and compared it with the GC-DCRNNmodel on
the Beijing dataset. In [34], Zheng et al. separately built a temporal
predictor (for dealing with the temporal relationship), a spatial pre-
dictor (for dealing with the spatial dimension), and then aggreated
the results. In the experiment, Zheng et al. reported the forecasting
results for the next six hours and the mean of max and min values
in the next 7-12 and 13-24 hours against the mean of the real PM2.5
values during the intervals. We reproduced their model (the tem-
poral, spatial, and aggregation predictors) and generated the MAE
results for the corresponding time intervals as mentioned in [34]. To
compare with the hybrid model, we calculated the mean of 7-12 and
13-24 hours by aggregating the forecasting results from our model.
Table 8 shows that our GC-DCRNN model outperformed the hy-
brid model regarding MAE at all forecasting horizons (h=1-6, 7-12,
and 13-24), which demonstrates the advantage of simultaneously
handling temporal and spatial dependencies in the GC-DCRNN
model.

Table 2: Details of Datasets

Datasets Los Angeles Beijing
Measurement Unit AQI Concentration

Time Span 2017-01-01 - 2017-01-01 -
2018-03-01 2018-03-01

Number of Stations 9 35
Number of Records 132,288 355,950
Missing Values (%) 7.91 8.83

Average 50.72 53.76
Standard Deviation 26.95 61.60

Table 3: Top 10 PM2.5-related geographic feature types
(ranked by the feature importance) in Los Angeles

Geo Name Buffer Size (meter) Geo type Importance
land use 1100 parking 0.07065
land use 2200 pitch 0.06250
building 1000 commercial 0.05000
road 3000 primary_road 0.04310

building 1900 factory 0.04310
building 700 hospital 0.04310
building 800 college 0.04310
roads 2000 residential 0.04153

land use 1000 nature_reserve 0.03750
building 2100 factory 0.03709

Table 4: Top 10 PM2.5-related geographic feature types
(ranked by the feature importance) in Beijing

Geo Name Buffer Size (meter) Geo type Importance
roads 1200 residential 0.02133
rail 900 railways 0.01737

land use 2600 park 0.05000
road 300 trunk 0.01431

land use 1500 forest 0.01286
roads 2100 service 0.01282

land use 500 park 0.01245
roads 2000 motorway_link 0.01146

land use 1500 retail 0.01124
roads 2100 primary_road 0.01122

Table 5: Comparison between the GC-DCRNN model and
baseline models using PM2.5 AQIs and meteorological data
in Los Angeles

Horizon Metric LR VAR GBM DCRNN

h=1 MAE 6.04 5.93 6.01 5.98
RMSE 8.94 8.72 8.86 9.23

h=6 MAE 14.33 13.81 13.83 13.86
RMSE 18.7 18.01 17.87 18.43

h=12 MAE 16.16 15.58 15.68 15.11
RMSE 20.83 20.2 20.4 19.75

h=18 MAE 17.06 16.83 16.99 15.58
RMSE 21.95 21.56 21.91 20.48

h=24 MAE 17.38 17.31 17.6 16.03
RMSE 22.43 22.23 22.68 21.08

Table 6: Comparison between the GC-DCRNN model and
baseline models using PM2.5 concentrations and meteoro-
logical data in Beijing

Horizon Metric LR VAR GBM DCRNN

h=1 MAE 8.68 8.69 8.82 8.10
RMSE 17.31 17.02 17.54 16.64

h=6 MAE 25.52 22.69 25.4 22.05
RMSE 41.05 37.89 41.36 37.85

h=12 MAE 34.4 31.99 34.54 29.62
RMSE 50.34 48.39 50.87 48.03

h=18 MAE 39.02 38.06 39.51 34.38
RMSE 53.27 53.32 54.25 52.05

h=24 MAE 41.03 41.75 42.12 36.62
RMSE 53.85 54.59 55.73 53.31

5 RELATEDWORK
There exists an abundant literature working on real-time air quality
forecasting (RT-AQF) for a short term or a long term depending
on the applications [31, 32]. The short-term forecasts (1-5 days)
are commonly used daily to inform the general public about the
potential unhealthy air quality so that they can take preventive
actions in advance. The long-term forecasts (>1 year) can provide
variation trends of pollutants, which is often used by environmental



Table 7: Effect of spatial dependency modeling. MAE results
of the GC-DCRNNmodel and its variant, IG-DCRNNmodel
and GD-DCRNN model.

Horizon IG-DCRNN GD-DCRNN GC-DCRNN
h=1 8.94 8.13 8.10
h=6 22.46 22.10 22.05
h=12 31.24 30.14 29.62
h=18 36.32 35.20 34.38
h=24 39.72 37.45 36.62

Table 8: MAE comparison between the hybrid model [34]
and the GC-DCRNN model

Horizon Hybrid Model [34] GC-DCRNN
h=1 8.44 8.10
h=2 13.07 12.15
h=3 16.62 15.26
h=4 19.45 17.85
h=5 21.83 20.13
h=6 23.86 22.05

h=7-12 28.19 25.45
h=13-24 34.41 31.43

health experts to analyze the climate change [29]. In [31, 32], short-
term RT-AQF techniques are grouped into three categories: simple
empirical approaches, statistical approaches, and physically-based
approaches. Simple empirical approaches is usually not powerful
enough to handle the air quality forecasting problem because it
gives the result based on historical data that have similar conditions
(e.g., temperature). Physically-based approaches usually require
sound knowledge about the air pollutants as well as detailed data
for analyzing the meteorological, physical, and chemical processes.
However, the data are usually inaccessible to the public and the
complex processes are difficult to be represented in a model. There-
fore, statistical approaches or machine learning techniques become
the most popular methods for the air quality forecasting problem
[3, 13, 16, 34]. Auto-regressive integrated moving average (ARIMA)
is a popular model for time series analysis and has been success-
fully applied to air quality forecasting [13, 14, 16]. ARIMA consists
of three parts: 1) the auto-regressive (AR) part indicates that the
evolving variable of interest can be approximated using a linear
combination of its own historical values; 2) the moving average
(MA) part models the residual from the AR part using a weighted
combination of random noises at various previous time steps; 3)
the integrate (I) part models the difference between adjacent values
rather than the raw values. Other popular time series forecasting
method [8] includes K-Nearest Neighbor (KNN), Support Vector
Regression (SVR), Gaussian Process, etc. However, these time series
models usually rely on the stationary assumption (i.e., the mean,
variance, and autocorrelation structure do not change over time),
which is often not suitable for real-time air quality data.

Artificial neural network (ANN) is also a popular method for
air quality forecasting by modeling the non-linear temporal depen-
dency. In [20], the author utilized multi-layer perceptron (MLP) ar-
tificial neural network (ANN) model to forecast daily maximum and

average O3 and particulate matter (PM2.5 and PM10) and showed
that MLP outperformed the traditional multiple linear regression
(MLR). However, it studied only one site “Chilliwack” with an ex-
tended period of air pollutant observations (three years). In [25], the
authors proposed to build separate ANN models for each monitor-
ing station to forecast the maximum value of the 24-hour moving
average of PM2.5. The experiment result showed that the multi-
layer neural network worked better than linear regression and the
persistence baseline (i.e., assigning hourly values on the next day
with the values at the present day). The approaches mentioned
above show a relatively better performance of ANN on air quality
forecasting, yet they deals with each time series separately without
considering spatial dependency among them.

Some hybrid models were proposed to handle both linear and
non-linear patterns in air quality time series data. In [7], the authors
presented a hybrid model combining ARIMA and ANN to improve
the forecasting accuracy for an area with limited air quality and
meteorological data. The idea was to first build an ARIMA model to
forecast daily maximum PM10 value and then use an ANN model to
describe the residuals from the ARIMA model. The result reported
that the hybrid model outperformed the separate ARIMA model
and ANN model. Similarly, in [3], the authors proposed a hybrid
model by combining an ARIMA model and a non-linear model. The
experiment showed an improvement on the hybrid model compar-
ing to the separate ARIMA model and the non-linear model with a
reduction of 26.31% and 21.05% in terms of the relative error (the
ratio of the absolute error to the real measurements). However,
those hybrid approaches do not consider spatial correlation with
the air quality data from other monitoring stations. In [34], the
authors proposed a hybrid model to forecast the air quality over
the next 48 hours (i.e., real-valued AQIs for the next 6 hours and
a max-min range of AQI for the next 7-12, 12-24 and 24-48 hours)
for each monitoring station. The hybrid model could handle the
temporal and spatial dependency in separate models (i.e., temporal
predictor and spatial predictor) and aggregate two predictors with
a regression tree. The result showed that the hybrid model outper-
formed the individual models. Some fixed-size buffers were selected
to pick the neighborhood stations around the target stations. How-
ever, geographic distances cannot reflect the similarity between
the air quality readings of two sensors when they are far apart
from each other. Moreover, separate models might not represent
the spatiotemporal patterns as a whole comprehensively.

Deep learning approaches deliver new promise for the time se-
ries forecasting problem. Deep recurrent neural network (RNN),
which is able to model non-linear temporal dependency, has re-
cently achieved promising results in sequence modeling as well
time series modeling [17], e.g., speech recognition [28] and traffic
forecasting [30]. To jointly model the spatial dependency and the
temporal dependency among time series, Li et al. [18] proposed
the Diffusion Convolutional Recurrent Neural Network (DCRNN)
which combines diffusion convolution with RNN.

Our proposed model, the GC-DCRNN model, is distinguished
from the above approaches in a number of ways: 1) our model
manipulates the spatial dependency with regard to air quality by
automatically selecting the crucial geographic features in neighbors
that have a great impact on PM2.5 concentrations and constructing
the graph with the similarity of the important features between



sensors instead of geographic distance; 2) our model captures both
the spatial and temporal dependencies in one model instead of just
handling temporal dependency or dealing with them in separate
models. The model can generate accurate air quality forecasting
results in the following 24 hours for all the stations at one time.

6 CONCLUSIONS AND FUTUREWORK
This paper presented a data driven approach to forecast PM2.5 con-
centrations using the previous-hour air quality and meteorological
data. The advantages of our approach include 1) our model could
handle both spatial and temporal dependencies in the time series
data simultaneously and achieved a better performance than other
traditional methods; 2) our method represents the spatial correla-
tion in a graph with automatically selected important geographic
feature types that largely affect PM2.5 concentrations and uses
those important geographic feature types to compute the adjacency
graph for the DCRNN model; 3) we use the easily accessible Open-
StreetMap to construct the geographic abstraction for capturing
the spatial dependency among air quality data instead of using data
that is expensive and difficult to obtain (e.g., traffic data). We plan
to include other important air quality-related features for handling
other temporal dynamics, e.g., workday/weekend and seasonal ef-
fects. Also, we plan to test more datasets, such as PurpleAir data,
and other geogeographic regions.
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